精英家教网 > 高中数学 > 题目详情
不等式组
y≥x-7
y≥-x+11
y≥-2x+14
表示的平面区域为D,若对数函数y=logax(a>0且a≠1)上存在区域D上的点,则实数a的取值范围是
 
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,根据对数函数的图象和性质,即可得到结论.
解答: 解:作出不等式组对应的平面区域如图:
若0<a<1,则由图象可知对数函数的图象一定与区域有交点.
若a>1,当对数函数图象经过点A时,满足条件,
此时
y=x-7
y=-x+11

解得
x=9
y=2
,即A(9,2),此时loga9=2,解得a=3,
∴当1<a≤3时,也满足条件.
∴实数a的取值范围是(0,1)∪(1,3],
故答案为:(0,1)∪(1,3]
点评:本题主要考查线性规划的应用,利用对数函数的图象和性质,通过数形结合是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知平面内一动点P到点F(2,0)的距离比点P到y轴的距离大2,
(Ⅰ)求动点P的轨迹C的方程;
(Ⅱ)过点F且斜率为2
2
的直线交轨迹C于A(x1,y1),B(x2,y2)(x1<x2)两点,P(x3,y3)(x3≥0)为轨迹C上一点,若
OP
=
OA
OB
,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0)的焦点为双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的一个焦点,且两条曲线都经过点M(2,4).
(1)求这两条曲线的标准方程;
(2)已知点P在抛物线上,且它与双曲线的左,右焦点构成的三角形的面积为4,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

投掷两颗相同的正方体骰子(骰子质地均匀,且各个面上依次标有点数1、2、3、4、5、6)一次,则两颗骰子向上点数之积等于6的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若二次函数f(x)=ax2+bx+c(a≠0)的图象和直线y=x无交点,现有下列结论:
①方程f[f(x)]=x一定没有实数根;
②若a>0,则不等式f[f(x)]>x对一切实数x都成立;
③若a<0,则必存在实数x0,使f[f(x0)]>x0
④函数g(x)=ax2-bx+c(a≠0)的图象与直线y=-x一定没有交点,
其中正确的结论是
 
(写出所有正确结论的编号).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x),x∈R,
(1)y=f(x-2)与y-f(2-x)的图象关于直线 x=2对称;
(2)有下列4个命题:
①若f(1+2x)=f(1-2x),则f(x)的图象关于直线x=1对称;
②f(2x+5)=f(2x)则5是y=f(x)的周期;
③若f(x)为偶函数,且f(2+x)=-f(x),则f(x)的图象关于直线x=2对称;
④若f(x)为奇函数,且f(x)=f(-x-2),则f(x)的图象关于直线x=1对称.
其中正确的命题为_
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={1,2,3,4,5},从A的非空子集中任取一个,该集合中所有元素之和为奇数的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列五个命题:
①随机事件的概率不可能为0;
②事件A,B中至少有一个发生的概率一定比A,B中恰有一个发生的概率大;
③掷硬币100次,结果51次出现正面,则出现正面的概率是
51
100

④互斥事件不一定是对立事件,对立事件一定是互斥事件;
⑤如果事件A与B相互独立,那么A与
.
B
.
A
与B,
.
A
.
B
也都相互独立
其中真命题的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+bx+c与y=x交于A,B两点且|AB|=3
2
,奇函数g(x)=
x2+c
x+d
,当x>0时,f(x)与g(x)都在x=x0取到最小值.
(1)求f(x),g(x)的解析式;
(2)若y=x与y=k+
1
2
f(x)
图象恰有两个不同的交点,求实数k的取值范围.

查看答案和解析>>

同步练习册答案