精英家教网 > 高中数学 > 题目详情
13.直线kx-y+1-3k=0,当k变化是,所有直线恒过定点(  )
A.(0,0)B.(3,1)C.(1,3)D.(-1,-3)

分析 化直线方程为点斜式,由点斜式的特点可得答案.

解答 解:直线方程kx-y+1-3k=0可化为y-1=k(x-3),
由直线的点斜式可知直线过定点(3,1)
故选:B.

点评 本题考查直线过定点问题,化直线方程为点斜式是解决问题的关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=$\left\{\begin{array}{l}{{3}^{x},x≤1}\\{lo{g}_{\frac{1}{3}}x,x>1}\end{array}\right.$,则函数y=f(x)+x-4 的零点个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.函数y=2x-${log}_{\frac{1}{2}}$(x+1)在区间[1,3]上的最大值和最小值之和为13.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(1)(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}$-(-9.6)0-(3$\frac{3}{8}$)${\;}^{-\frac{2}{3}}$+1.5-2 
(2)1g500+1g$\frac{8}{5}$-$\frac{1}{2}$1g64+(lg2+1g5)2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.过点(-a-6,3),(2a,3a)的直线与过点点(2,1),(3,1)的直线垂直,则实数a的值是(  )
A.2B.-2C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知圆C:x2+y2-4x-2y-4=0及点P(4,-3),直线mx-y-2m+1=0与圆C交于两点A,B.
(1)求过点P且被圆C截得的弦长为2$\sqrt{5}$的直线方程;
(2)试探究$\overrightarrow{PA}$•$\overrightarrow{PB}$是否为定值?若为定值,请求出;若不为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=|2x-1|-1;
(1)作出函数f(x)的图象;
(2)讨论方程f(x)-2a=0(a∈R)的根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=ex-ax-a,g(x)=me-x-ax+a.
(1)若函数f(x)-g(x)为偶函数,求m的值;
(2)在(1)的条件下,若a>0,f(x)≥0对一切x∈R恒成立,且存在g(x0)≥0,求a的值;
(3)设h(x)=f(x)+$\frac{a}{{e}^{x}}$,且A(x1,y1)、B(x2,y2)(x1≠x2)是曲线y=h(x)上任意两点,若对任意a≤-1,$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$>m恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的两个焦点分别为F1、F2,以F1F2为边作正△MF1F2,若双曲线恰好平分该三角形的另两边,则双曲线的离心率为(  )
A.$\sqrt{2}$+1B.$\sqrt{3}$+1C.$\sqrt{5}$D.$\sqrt{3}$

查看答案和解析>>

同步练习册答案