精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=lnx,g(x)=$\frac{1}{2}$x2-mx+1(m∈R).
(1)设函数f(x)=2m2f(x)-g(x),求函数F(x)的单调区间;
(2)对于任意实数x1,x2∈[1,2],且x1≠x2,都有f(x1)-f(x2)>g(x2)-g(x1)成立,求实数m的取值范围.

分析 (1)求出F(x)的导数,通过讨论m的范围,求出函数的单调区间即可;
(2)问题转化为f(x)min>g(x)max在[1,2]恒成立,f(x)min=f(1)=0,只需g(x)<0在[1,2]恒成立即可,根据函数的单调性求出m的范围即可.

解答 解:(1)F(x)=2m2f(x)-g(x)=2m2lnx-$\frac{1}{2}$x2-mx+1,(x>0),
F′(x)=-$\frac{(x-2m)(x+m)}{x}$,
①m>0时,x+m>0,
令F′(x)>0,解得:x<2m,令F′(x)<0,解得:x>2m,
∴F(x)在(0,2m)递增,在(2m,+∞)递减,
②m=0时,F′(x)<0,F(x)在(0,+∞)递减,
③m<0时,x-2m>0,
令F′(x)>0,解得:x<-m,令F′(x)<0,解得:x>-m,
∴F(x)在(0,-m)递增,在(-m,+∞)递减;
(2)对于任意实数x1,x2∈[1,2],且x1≠x2,都有f(x1)-f(x2)>g(x2)-g(x1)成立,
即f(x)min>g(x)max在[1,2]恒成立,
f(x)=lnx在[1,2]递增,f(x)min=f(1)=0,
∴只需g(x)<0在[1,2]恒成立即可,
函数g(x)的对称轴x=m,
m≤1时,g(x)在[1,2]递增,g(x)max=g(2)=3-2m<0,解得:m>$\frac{3}{2}$,舍,
m≥2时,g(x)在[1,2]递减,g(x)max=g(1)=$\frac{3}{2}$-m<0,解得:m>$\frac{3}{2}$,
故m≥2;
1<m<2时,g(x)max=max{g(1)或g(2)},解得:m>$\frac{3}{2}$,
故$\frac{3}{2}$<m<2,
综上:m>$\frac{3}{2}$.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.如图所示的程序框图输出的结果是S=5040,则判断框内应填的条件是(  )
A.i≤7B.i>7C.i≤6D.i>6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求下列方程的解集:
(1)sin5x=sin7x;
(2)cos(x-$\frac{π}{4}$)=cos2x;
(3)sin2x=cos3x;
(4)tan3x•tan(x+$\frac{π}{4}$)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.一个多面体的三视图如图所示,正视图为等腰直角三角形,俯视图中虚线平分矩形的面积,则该多面体的表面积为(  )
A.2B.4+2$\sqrt{2}$C.4+4$\sqrt{2}$D.6+4$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知空间几何体的三视图如图所示,则该几何体的表面积是28+8π;几何体的体积是12+4π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=xcosx-sinx+$\frac{1}{4}$x2,当x∈(0,π)时,求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知一个几何体的三视图如图所示,正视图和侧视图是两个的全等的等腰梯形,梯形上底、下底分别为2,4,腰长为$\sqrt{10}$,则该几何体的体积为(  )
A.$\frac{28}{3}$$\sqrt{10}$-3πB.28-2πC.28-3πD.$\frac{28}{3}$$\sqrt{10}$-2π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=$\left\{\begin{array}{l}{|lo{g}_{3}x|,0<x<3}\\{\frac{1}{3}{x}^{2}-\frac{10}{3}x+8,x≥3}\end{array}\right.$,若存在实数a、b、c、d满足f(a)=f(b)=f(c)=f(d),其中d>c>b>a>0,则abcd的取值范围是(21,24),a+b+c+d的取值范围是(12,$\frac{40}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.定义在R上的奇函数f(x)满足f(x)=f(x-4),且在[0,2)上单调递增,则下列结论中正确的是(  )
A.0<f(-1)<f(5)B.f(-1)<f(5)<0C.f(5)<f(-1)<0D.f(-1)<0<f(5)

查看答案和解析>>

同步练习册答案