相关习题
 0  247569  247577  247583  247587  247593  247595  247599  247605  247607  247613  247619  247623  247625  247629  247635  247637  247643  247647  247649  247653  247655  247659  247661  247663  247664  247665  247667  247668  247669  247671  247673  247677  247679  247683  247685  247689  247695  247697  247703  247707  247709  247713  247719  247725  247727  247733  247737  247739  247745  247749  247755  247763  266669 

科目: 来源: 题型:选择题

2.下列说法错误的是(  )
A.设有一个回归方程为$\widehat{y}$=3-5x,则变量x每增加一个单位,y平均增加5个单位
B.回归直线$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$必过点($\overline{x}$,$\overline{y}$)
C.在一个2×2列联表中,由计算得随机变量K2的观测值k=13.079,则可以在犯错误的概率不超过0.001的前提下,认为这两个变量间有关系
D.将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变

查看答案和解析>>

科目: 来源: 题型:填空题

1.已知函数f(x)=ex-alnx的定义域是(0,+∞),关于函数f(x)给出下列命题:
①对于任意a∈(0,+∞),函数f(x)存在最小值;
②对于任意a∈(-∞,0),函数f(x)是(0,+∞)上的减函数;
③存在a∈(-∞,0),使得对于任意的x∈(0,+∞),都有f(x)>0成立;
④存在a∈(0,+∞),使得函数f(x)有两个零点.
其中正确命题的序号是①④.

查看答案和解析>>

科目: 来源: 题型:选择题

20.观察下列各式:

照此规律,当n∈N*时,C2n-10+C2n-11+C2n-12+…+C2n-1n-1=(  )
A.4n+1B.4nC.4n-1D.4n-2

查看答案和解析>>

科目: 来源: 题型:选择题

19.在极坐标系中,直线ρcosθ=1与圆ρ=2cosθ的位置关系是(  )
A.相离B.相切C.相交但不过圆心D.相交且过圆心

查看答案和解析>>

科目: 来源: 题型:选择题

18.如图1是一个边长为1的正三角形,分别连接这个三角形三边中点,将在三角剖分成4个三角开(如图2),再分别连接图2中一个小三角形三边的中点,又可将原三角形剖分成7个三角形(如图3),…,依此类推,设第n个图中原三角形被剖分成an个三角形,则第4个图中最小三角形的边长为(  );a100=(  )
A.$\frac{1}{6}$,300B.$\frac{1}{8}$,300C.$\frac{1}{6}$,298D.$\frac{1}{8}$,298

查看答案和解析>>

科目: 来源: 题型:填空题

17.下面有五个命题:
①函数y=sin4x-cos4x的最小正周期是π;
②终边在y轴上的角的集合是{α|α=$\frac{kπ}{2}$,k∈Z};
③函数f(x)=|sin(x+$\frac{π}{3}$)|(x∈R),在区间[$\frac{2π}{3}$,$\frac{7π}{6}$]上是增函数;
④若动直线x=a与函数f(x)=sinx和g(x)=cosx的图象分别交于M,N两点,则|MN|的最大值为1.
其中真命题的序号是①③.

查看答案和解析>>

科目: 来源: 题型:填空题

16.投掷一枚均匀硬币,则正面或反面出现的概率都是$\frac{1}{2}$,反复这样的投掷,数列{an}定义如下:an=$\left\{\begin{array}{l}{1\\ 第n此投掷出现正面}\\{-1\\ 第n此投掷出现反面}\end{array}\right.$,设Sn=a1+a2+…an,则S2≠0,且S6=0的概率为$\frac{1}{8}$.

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知数列{an}、{bn}、{cn}的通项公式分别为:an=n,bn=n(n+1),cn=n(n+1)(n+2),数列{an},{bn}的前n项和分别为S1(n),S2(n),观察下表:
n12345678
an12345678
S1(n)1361015212836
bn26122030425672
发现S1(n)=$\frac{1}{2}$bn,并可用下面方法证明:
因为ak=k=$\frac{1}{2}[k(k+1)-(k-1)k]$,k=1,2,…n,
所以S1(n)=a1+a2+…an=1+2+…+n=$\frac{1}{2}{(1×2-0×1)+(2×3-1×2)…+[n(n+1)-(n-1)n]}$=$\frac{1}{2}n(n+1)=\frac{1}{2}{b}_{n}$.
(1)指出S2(n)与cn的关系,并类比上面方法证明你的结论;
(2)求和Tn=12+22+…+n2

查看答案和解析>>

科目: 来源: 题型:解答题

14.设函数f(x)=x2+aln(x+1).
(1)若a=-12,写出函数f(x)的单调区间;
(2)若函数f(x)在[2,+∞)上单调递增,求实数a的取值范围;
(3)若在区间[0,1]上,函数f(x)在x=0处取得最大值,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

13.设函数f(x)=-x3+2x2-x(x∈R).
(1)求曲线y=f(x)在点(2,f(2))处的切线方程;
(2)求函数f(x)的极值.

查看答案和解析>>

同步练习册答案