相关习题
 0  252088  252096  252102  252106  252112  252114  252118  252124  252126  252132  252138  252142  252144  252148  252154  252156  252162  252166  252168  252172  252174  252178  252180  252182  252183  252184  252186  252187  252188  252190  252192  252196  252198  252202  252204  252208  252214  252216  252222  252226  252228  252232  252238  252244  252246  252252  252256  252258  252264  252268  252274  252282  266669 

科目: 来源: 题型:选择题

3.已知a=2${\;}^{-\frac{1}{3}}$,b=log20.7,c=log23,则(  )
A.a>b>cB.a>c>bC.c>a>bD.c>b>a

查看答案和解析>>

科目: 来源: 题型:选择题

2.下列函数,在其定义域内既是奇函数又是增函数的是(  )
A.y=-log2xB.y=3xC.y=-$\frac{1}{x}$D.y=x3

查看答案和解析>>

科目: 来源: 题型:填空题

1.设点P是双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1(a>0,b>0)$与圆x2+y2=2a2的一个交点,F1、F2分别是双曲线的左右焦点,且PF1=3PF2,则双曲线的离心率为$\sqrt{3}$.

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知直线1的方程为x+(a-1)y+a2-1=0.
(1)若直线1不过第二象限,求实数a的取值范围;
(2)若直线1将圆x2+y2-2mx-4y=0平分,当m取得最大值时,求圆的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

19.如图所示,在正方体ABCD-A1B1C1D1中,E在A1D1上,且$\overrightarrow{{A}_{1}E}=2\overrightarrow{E{D}_{1}}$,F在对角线A1C上,且$\overrightarrow{{A}_{1}F}=\frac{2}{3}\overrightarrow{FC}$.求证:E,F,B三点共线.

查看答案和解析>>

科目: 来源: 题型:选择题

18.过点(1,1)且$\frac{b}{a}$=$\sqrt{2}$的双曲线的标准方程为(  )
A.$\frac{{x}^{2}}{\frac{1}{2}}$-y2=1B.$\frac{{y}^{2}}{\frac{1}{2}}$-x2=1
C.x2-$\frac{{y}^{2}}{\frac{1}{2}}$=1D.$\frac{{x}^{2}}{\frac{1}{2}}$-y2=1或$\frac{{y}^{2}}{\frac{1}{2}}$-x2=1

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1的离心率e=$\frac{\sqrt{5}}{2}$,点A(0,1)与双曲线上的点的最小距离是$\frac{2}{5}$$\sqrt{30}$,求双曲线的方程.

查看答案和解析>>

科目: 来源: 题型:填空题

16.已知函数y=tan(2x+φ)的图象的一个对称中心为($\frac{π}{2}$,0),则φ={α|α=($\frac{1}{2}$k-1)π,k∈Z}.

查看答案和解析>>

科目: 来源: 题型:解答题

15.如图,M为椭圆C:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0)的左顶点,F1是它的下焦点,F1也是抛物线x2=-4y的焦点,直线MF1与椭圆C的另一个交点为N,满足$\overrightarrow{M{F}_{1}}$=$\frac{5}{3}$$\overrightarrow{{F}_{1}N}$
(1)求椭圆C的方程;
(2)若直线l:y=kx+m与椭圆C相交于A、B两点(A、B不是上下顶点),且满足AA2⊥BA2(A2为上顶点),求证:直线l过定点,并求出该定点的坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知方程ax2+bx+c=0(a≠0)有一非零根x1,方程-ax2+bx+c=0有一非零根x2
(1)令f(x)=$\frac{a}{2}$x2+bx+c,求证:f(x1)f(x2)<0
(2)证明:方程$\frac{a}{2}$x2+bx+c=0必有一根介于x1和x2之间.

查看答案和解析>>

同步练习册答案