相关习题
 0  252686  252694  252700  252704  252710  252712  252716  252722  252724  252730  252736  252740  252742  252746  252752  252754  252760  252764  252766  252770  252772  252776  252778  252780  252781  252782  252784  252785  252786  252788  252790  252794  252796  252800  252802  252806  252812  252814  252820  252824  252826  252830  252836  252842  252844  252850  252854  252856  252862  252866  252872  252880  266669 

科目: 来源: 题型:解答题

13.求下列抛物线的焦点坐标和准线方程:
(1)x2=2y;'
(2)4x2+3y=0;
(3)2y2+x=0;
(4)y2-6x=0.

查看答案和解析>>

科目: 来源: 题型:解答题

12.用lgx,lgy,lgz表示下列各式:
(1)lg(x2y3z);
(2)$lg(\frac{{x}^{2}}{{y}^{3}})^{\frac{3}{4}}$;
(3)lg(x${y}^{\frac{1}{2}}$${z}^{-\frac{3}{4}}$);
(4)lg(x5$\sqrt{\frac{y}{z}}$)

查看答案和解析>>

科目: 来源: 题型:解答题

11.如图,已知M(x0,y0)是椭圆C:$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{3}$=1上的任一点,从原点O向圆M:(x-x02+(y-y02=2作两条切线,分别交椭圆于点P、Q.
(1)若直线OP,OQ的斜率存在,并记为k1,k2,求证:k1k2为定值.
(2)试问OP2+OQ2是否为定值?若是,求出该值;若不是,说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

10.(1)已知cos(α-$\frac{β}{2}$)=-$\frac{1}{9}$,sin($\frac{α}{2}$-β)=$\frac{2}{3}$,且$\frac{π}{2}$<α<π,0$<β<\frac{π}{2}$,求cos$\frac{α+β}{2}$值.
(2)已知tanα=2,求$\frac{cos(π-α)cos(\frac{π}{2}+α)sin(α-\frac{3π}{2})}{sin(3π+α)sin(α-π)cos(π+α)}$的值.

查看答案和解析>>

科目: 来源: 题型:解答题

9.如图所示,在边长为4的正方形ABCD的边上有一点P,当P点由点B(起点)向点A(终点)沿逆时针方向移动(B→C→D→A)时,三点A、B、P构成△ABP,求:
(1)△ABP的面积y关于点P移动的路程x的函数关系式;
(2)当路程x为多少时面积y有最大值?并求此最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

8.如图,过椭圆的左顶点A作两条互相垂直的直线分别交椭圆与P、Q连接PQ.
(1)问直线PQ是否过一定点,如果经过定点求出该点坐标,否则请说明理由;
(2)求△APQ面积取最大值时,直线PQ的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

7.求由下列函数的导数$\frac{dy}{dx}$:
(1)y=$\sqrt{xsinx\sqrt{1-{e}^{x}}}$
(2)y=$\frac{\sqrt{x+2}(3-x)^{4}}{(x+1)^{5}}$.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知椭圆C的中心为坐标原点,焦点在坐标轴上,且经过点M(4,1),N(2,2).
(1)求椭圆C的方程;
(2)若斜率为1的直线l与椭圆C交于不同的两点A,B,且|AB|=$\frac{16\sqrt{3}}{5}$,求直线l的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知圆C1:x2+y2=r2与椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)于x轴的交点重合,且椭圆C2的离心率为$\frac{\sqrt{2}}{2}$,圆C1上的点到直线l:x=-2$\sqrt{2}$的最短距离为2$\sqrt{2}$-2.
(1)求椭圆C2的方程;
(2)如图过直线1上的动点T作圆C1的两条切线,设切点分别为A、B,若直线AB与椭圆C2交于不同的两点C、D,求△OCD面积的最大值.

查看答案和解析>>

科目: 来源: 题型:填空题

4.设y=f(x2),则y″=2f′(x2)+4x2f″(x2).

查看答案和解析>>

同步练习册答案