科目: 来源: 题型:
【题目】在平面直角坐标系xOy中,点B与点A(﹣1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于﹣ .
(1)求动点P的轨迹方程;
(2)设直线AP和BP分别与直线x=3交于点M,N,问:是否存在点P使得△PAB与△PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知数列{an}的前n项和Sn满足(p﹣1)Sn=p2﹣an(p>0,p≠1),且a3= .
(1)求数列{an}的通项公式;
(2)设bn= ,数列{bnbn+2}的前n项和为Tn , 若对于任意的正整数n,都有Tn<m2﹣m+ 成立,求实数m的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
(1)求回归直线方程.
(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是5元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)
参考数据如下:
查看答案和解析>>
科目: 来源: 题型:
【题目】某城市100户居民的月平均用电量(单位:度),以,,,,,,分组的频率分布直方图如图.
(1)求直方图中的值;
(2)求月平均用电量的平均数、众数和中位数;
(3)在月平均用电量为,,,,的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在的用户中应抽取多少户?
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆E过点A(2,3),对称轴为坐标轴,焦点F1,F2在x轴上,离心率,∠F1AF2的平分线所在直线为l.
(1)求椭圆E的方程;
(2)设l与x轴的交点为Q,求点Q的坐标及直线l的方程;
(3)在椭圆E上是否存在关于直线l对称的相异两点?若存在,请找出;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,直线PA⊥平面ABCD,AD∥BC,AB⊥AD,BC=2AB=2AD=4BE=4.
(1)求证:直线DE⊥平面PAC.
(2)若直线PE与平面PAC所成的角的正弦值为 ,求二面角A﹣PC﹣D的平面角的余弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,四棱锥PABC中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.
(Ⅰ)证明MN∥平面PAB;
(Ⅱ)求直线AN与平面PMN所成角的正弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】(本小题满分12分)
已知抛物线C的方程C:y2="2" p x(p>0)过点A(1,-2).
(I)求抛物线C的方程,并求其准线方程;
(II)是否存在平行于OA(O为坐标原点)的直线l,使得直线l与抛物线C有公共点,且直线OA与l的距离等于?若存在,求出直线l的方程;若不存在,说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com