科目: 来源: 题型:
【题目】已知函数f(x)=|x﹣2|+|2x+a|,a∈R. (Ⅰ)当a=1时,解不等式f(x)≥5;
(Ⅱ)若存在x0满足f(x0)+|x0﹣2|<3,求a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系xOy中,曲线C1的参数方程为
(其中α为参数),以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=4sinθ. (Ⅰ)若A,B为曲线C1 , C2的公共点,求直线AB的斜率;
(Ⅱ)若A,B分别为曲线C1 , C2上的动点,当|AB|取最大值时,求△AOB的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知O为坐标原点,P(x,y)为函数y=1+lnx图象上一点,记直线OP的斜率k=f(x). (Ⅰ)若函数f(x)在区间(m,m+
)(m>0)上存在极值,求实数m的取值范围;
(Ⅱ)当x≥1时,不等式f(x)≥
恒成立,求实数t的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知F1 , F2分别是椭圆C:
=1(a>b>0)的两个焦点,P(1,
)是椭圆上一点,且
|PF1|,|F1F2|,
|PF2|成等差数列.
(1)求椭圆C的标准方程;
(2)已知动直线l过点F2 , 且与椭圆C交于A、B两点,试问x轴上是否存在定点Q,使得
=﹣
恒成立?若存在,求出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图:四棱锥P﹣ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=
,点F是PB的中点,点E在边BC上移动. ![]()
(1)证明:无论点E在BC边的何处,都有PE⊥AF;
(2)当BE等于何值时,PA与平面PDE所成角的大小为45°.
查看答案和解析>>
科目: 来源: 题型:
【题目】设数列{an},其前n项和Sn=﹣3n2 , {bn}为单调递增的等比数列,b1b2b3=512,a1+b1=a3+b3 .
(1)求数列{an},{bn}的通项;
(2)若cn=
,数列{cn}的前n项和Tn , 求证:
<1.
查看答案和解析>>
科目: 来源: 题型:
【题目】△ABC中,角A,B,C的对边分别是a,b,c且满足(2a﹣c)cosB=bcosC.
(1)求角B的大小;
(2)若△ABC的面积为
,求a+c的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,PA⊥圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E、F分别是点A在PB、PC上的射影,给出下列结论: ①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC;⑤平面PBC⊥平面PAC.其中正确命题的序号是 . ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】设D是函数y=f(x)定义域内的一个区间,若存在x0∈D,使f(x0)=﹣x0 , 则称x0是f(x)的一个“次不动点”,也称f(x)在区间D上存在次不动点.若函数f(x)=ax2﹣3x﹣a+
在区间[1,4]上存在次不动点,则实数a的取值范围是( )
A.(﹣∞,0)
B.(0,
)
C.[
,+∞)
D.(﹣∞,
]
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)满足f(x)=f(
)且当x∈[
,1]时,f(x)=lnx,若当x∈[
]时,函数g(x)=f(x)﹣ax与x轴有交点,则实数a的取值范围是( )
A.[﹣
,0]
B.[﹣πlnπ,0]
C.[﹣
,
]
D.[﹣
,﹣
]
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com