科目: 来源: 题型:
【题目】已知函数
(1)设a>1,试讨论f(x)单调性;
(2)设g(x)=x2﹣2bx+4,当 时,任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),求实数b的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在三棱锥S﹣ABC中,SA⊥底面ABC,AC=AB=SA=2,AC⊥AB,D,E分别是AC,BC的中点,F在SE上,且SF=2FE.
(1)求证:AF⊥平面SBC;
(2)在线段上DE上是否存在点G,使二面角G﹣AF﹣E的大小为30°?若存在,求出DG的长;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】设函数f(x)=(x﹣a)|x﹣a|+b,a,b∈R,则下列叙述中,正确的序号是( ) ①对任意实数a,b,函数y=f(x)在R上是单调函数;
②对任意实数a,b,函数y=f(x)在R上都不是单调函数;
③对任意实数a,b,函数y=f(x)的图象都是中心对称图象;
④存在实数a,b,使得函数y=f(x)的图象不是中心对称图象.
A.①③
B.②③
C.①④
D.③④
查看答案和解析>>
科目: 来源: 题型:
【题目】已知数列{an}的各项都是正数,a1=1,an+12=an2+ (n∈N*)
(1)求证: ≤an<2(n≥2)
(2)求证:12(a2﹣a1)+22(a3﹣a2)+…+n2(an+1﹣an)> ﹣ (n∈N*)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,P(x0 , y0)是椭圆 +y2=1的上的点,l是椭圆在点P处的切线,O是坐标原点,OQ∥l与椭圆的一个交点是Q,P,Q都在x轴上方
(1)当P点坐标为( , )时,利用题后定理写出l的方程,并验证l确定是椭圆的切线;
(2)当点P在第一象限运动时(可以直接应用定理)
①求△OPQ的面积
②求直线PQ在y轴上的截距的取值范围.
定理:若点(x0 , y0)在椭圆 +y2=1上,则椭圆在该点处的切线方程为 +y0y=1.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=xex﹣a(x﹣1)(a∈R)
(1)若函数f(x)在x=0处有极值,求a的值及f(x)的单调区间
(2)若存在实数x0∈(0, ),使得f(x0)<0,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com