科目: 来源: 题型:
【题目】已知等比数列{an}的公比q=2,前3项和是7,等差数列{bn}满足b1=3,2b2=a2+a4 . (Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)求数列
的前n项和Sn .
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系xOy中.点M不与点O重合,称射线OM与圆x2+y2=1的交点N为点M的“中心投影点“. ⑴点M(1,
)的“中心投影点”为
⑵曲线x2
上所有点的“中心投影点”构成的曲线的长度是 .
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
下列四个命题: ①f(f(1))>f(3);
②x0∈(1,+∞),
;
③f(x)的极大值点为x=1;
④x1 , x2∈(0,+∞),|f(x1)﹣f(x2)|≤1
其中正确的有 . (写出所有正确命题的序号)
查看答案和解析>>
科目: 来源: 题型:
【题目】血药浓度(Plasma Concentration)是指药物吸收后在血浆内的总浓度.药物在人体内发挥治疗作用时,该药物的血药浓度应介于最低有效浓度和最低中毒浓度之间.已知成人单次服用1单位某药物后,体内血药浓度及相关信息如图所示: ![]()
根据图中提供的信息,下列关于成人使用该药物的说法中,不正确的是( )
A.首次服用该药物1单位约10分钟后,药物发挥治疗作用
B.每次服用该药物1单位,两次服药间隔小于2小时,一定会产生药物中毒
C.每间隔5.5小时服用该药物1单位,可使药物持续发挥治疗作用
D.首次服用该药物1单位3小时后,再次服用该药物1单位,不会发生药物中毒
查看答案和解析>>
科目: 来源: 题型:
【题目】对于无穷数列{an},记T={x|x=aj﹣ai , i<j},若数列{an}满足:“存在t∈T,使得只要am﹣ak=t(m,k∈N*且m>k),必有am+1﹣ak+1=t”,则称数列{an}具有性质P(t). (Ⅰ)若数列{an}满足
判断数列{an}是否具有性质P(2)?是否具有性质P(4)?
(Ⅱ)求证:“T是有限集”是“数列{an}具有性质P(0)”的必要不充分条件;
(Ⅲ)已知{an}是各项为正整数的数列,且{an}既具有性质P(2),又具有性质P(5),求证:存在整数N,使得aN , aN+1 , aN+2 , …,aN+k , …是等差数列.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=eax﹣x. (Ⅰ)若曲线y=f(x)在(0,f(0))处的切线l与直线x+2y+3=0垂直,求a的值;
(Ⅱ)当a≠1时,求证:存在实数x0使f(x0)<1.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知动点M到点N(1,0)和直线l:x=﹣1的距离相等. (Ⅰ)求动点M的轨迹E的方程;
(Ⅱ)已知不与l垂直的直线l'与曲线E有唯一公共点A,且与直线l的交点为P,以AP为直径作圆C.判断点N和圆C的位置关系,并证明你的结论.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,三棱锥P﹣ABC,侧棱PA=2,底面三角形ABC为正三角形,边长为2,顶点P在平面ABC上的射影为D,有AD⊥DB,且DB=1. ![]()
(Ⅰ)求证:AC∥平面PDB;
(Ⅱ)求二面角P﹣AB﹣C的余弦值;
(Ⅲ)线段PC上是否存在点E使得PC⊥平面ABE,如果存在,求
的值;如果不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】为了响应教育部颁布的《关于推进中小学生研学旅行的意见》,某校计划开设八门研学旅行课程,并对全校学生的选择意向进行调查(调查要求全员参与,每个学生必须从八门课程中选出唯一一门课程).本次调查结果整理成条形图如下.图中,已知课程A,B,C,D,E为人文类课程,课程F,G,H为自然科学类课程.为进一步研究学生选课意向,结合图表,采取分层抽样方法从全校抽取1%的学生作为研究样本组(以下简称“组M”). ![]()
(Ⅰ)在“组M”中,选择人文类课程和自然科学类课程的人数各有多少?
(Ⅱ)为参加某地举办的自然科学营活动,从“组M”所有选择自然科学类课程的同学中随机抽取4名同学前往,其中选择课程F或课程H的同学参加本次活动,费用为每人1500元,选择课程G的同学参加,费用为每人2000元.
(ⅰ)设随机变量X表示选出的4名同学中选择课程G的人数,求随机变量X的分布列;
(ⅱ)设随机变量Y表示选出的4名同学参加科学营的费用总和,求随机变量Y的期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com