精英家教网 > 高中物理 > 题目详情
如图所示,均匀木棒OA可绕过O点的水平轴自由转动,有一个方向不变的水平力F作用于该木棒的A点,使棒从竖直位置缓慢转到偏角θ<90°的某一位置。则在此过程中
[     ]
A.F不断变小
B.F不断变大
C.F一直不变
D.F先变小,后变大
练习册系列答案
相关习题

科目:高中物理 来源: 题型:

(2005?闸北区模拟)如图所示粗细均匀的木棒长为L,质量为M,可绕固定转动轴O自由转动,现用水平力F作用于木棒的下端将木棒从竖直位置缓慢拉起,并转过θ角度,则在拉起的过程中,拉力F做的功为多少?
某同学解法为:
木棒与竖直位置成θ时,木棒所受的力矩平衡   Mg Lsinθ/2=F Lcosθ,
得到F=Mgtgθ/2
从竖直位置缓慢拉起的过程中,拉力F从0变化到Mgtgθ/2,
拉力F的平均值
.
F
=Mgtgθ/4
拉力作用点在力F方向上的位移是    S=L sinθ
根据W=FS     解得:拉力F 做的功:WF=Mg L sinθtgθ/4
所以在拉起的过程中,拉力F做的功为WF=Mg L sinθtgθ/4,
你认为他的解法是否正确?若正确,请说明理由;若错误,也请说明理由,并且解出正确的结果.

查看答案和解析>>

科目:高中物理 来源:闸北区模拟 题型:问答题

如图所示粗细均匀的木棒长为L,质量为M,可绕固定转动轴O自由转动,现用水平力F作用于木棒的下端将木棒从竖直位置缓慢拉起,并转过θ角度,则在拉起的过程中,拉力F做的功为多少?
某同学解法为:
木棒与竖直位置成θ时,木棒所受的力矩平衡   Mg Lsinθ/2=F Lcosθ,
得到F=Mgtgθ/2
从竖直位置缓慢拉起的过程中,拉力F从0变化到Mgtgθ/2,
拉力F的平均值
.
F
=Mgtgθ/4
拉力作用点在力F方向上的位移是    S=L sinθ
根据W=FS     解得:拉力F 做的功:WF=Mg L sinθtgθ/4
所以在拉起的过程中,拉力F做的功为WF=Mg L sinθtgθ/4,
你认为他的解法是否正确?若正确,请说明理由;若错误,也请说明理由,并且解出正确的结果.
精英家教网

查看答案和解析>>

科目:高中物理 来源:2004-2005学年上海市普陀区高三(上)期末物理试卷(解析版) 题型:解答题

如图所示粗细均匀的木棒长为L,质量为M,可绕固定转动轴O自由转动,现用水平力F作用于木棒的下端将木棒从竖直位置缓慢拉起,并转过θ角度,则在拉起的过程中,拉力F做的功为多少?
某同学解法为:
木棒与竖直位置成θ时,木棒所受的力矩平衡   Mg Lsinθ/2=F Lcosθ,
得到F=Mgtgθ/2
从竖直位置缓慢拉起的过程中,拉力F从0变化到Mgtgθ/2,
拉力F的平均值=Mgtgθ/4
拉力作用点在力F方向上的位移是    S=L sinθ
根据W=FS     解得:拉力F 做的功:WF=Mg L sinθtgθ/4
所以在拉起的过程中,拉力F做的功为WF=Mg L sinθtgθ/4,
你认为他的解法是否正确?若正确,请说明理由;若错误,也请说明理由,并且解出正确的结果.

查看答案和解析>>

科目:高中物理 来源:2005年上海市闸北区高考物理模拟试卷(4月份)(解析版) 题型:解答题

如图所示粗细均匀的木棒长为L,质量为M,可绕固定转动轴O自由转动,现用水平力F作用于木棒的下端将木棒从竖直位置缓慢拉起,并转过θ角度,则在拉起的过程中,拉力F做的功为多少?
某同学解法为:
木棒与竖直位置成θ时,木棒所受的力矩平衡   Mg Lsinθ/2=F Lcosθ,
得到F=Mgtgθ/2
从竖直位置缓慢拉起的过程中,拉力F从0变化到Mgtgθ/2,
拉力F的平均值=Mgtgθ/4
拉力作用点在力F方向上的位移是    S=L sinθ
根据W=FS     解得:拉力F 做的功:WF=Mg L sinθtgθ/4
所以在拉起的过程中,拉力F做的功为WF=Mg L sinθtgθ/4,
你认为他的解法是否正确?若正确,请说明理由;若错误,也请说明理由,并且解出正确的结果.

查看答案和解析>>

同步练习册答案