精英家教网 > 高中物理 > 题目详情
11.足球比赛中,经常使用“边路突破,下底传中”的战术,即攻方队员带球沿边线前进,到底线附近进行传中.某足球场长90m、宽60m.攻方前锋在中线处将足球沿边线向前踢出,足球的运动可视为在地面上做初速度为12m/s的匀减速直线运动,加速度大小为2m/s2.试求:
(1)足球从开始做匀减速运动到停下来的位移为多大?
(2)足球开始做匀减速直线运动的同时,该前锋队员沿边线向前追赶足球.他的启动过程可以视为初速度为0,加速度为2m/s2的匀加速直线运动,他能达到的最大速度为8m/s.该前锋队员至少经过多长时间能追上足球?

分析 (1)根据速度时间公式求出足球做匀减速运动到停下来的时间,结合平均速度的推论求出匀减速运动的位移.
(2)根据速度时间公式和位移公式求出前锋队员达到最大速度时的时间和位移,判断是否追上足球,若未追上,前锋队员将匀速追赶,根据位移关系求出追及的时间.

解答 解:(1)已知足球的初速度为v1=12m/s,加速度大小为a1=2m/s2
足球做匀减速运动的时间为:t1=$\frac{{v}_{1}}{{a}_{1}}$=6s
位移为:x1=$\frac{{v}_{1}}{2}$t1=36m
(2)已知前锋队员的加速度为a2=2m/s2,最大速度为v2=8m/s,前锋队员做匀加速运动达到最大速度的时间和位移分别为:
t2=$\frac{{v}_{2}}{{a}_{2}}$=4s
x2=$\frac{{v}_{2}}{2}$t2=16m
之后前锋队员做匀速直线运动,到足球停止运动时,其位移为:
x3=v2(t1-t2)=16m
由于x2+x3<x1,故足球停止运动时,
前锋队员没有追上足球,然后前锋队员继续以最大速度匀速运动追赶足球,利用公式x1-(x2+x3)=v2t3,得:t3=0.5s
前锋队员追上足球的时间t=t1+t3=6.5s.
答:(1)足球从开始做匀减速运动到停下来的位移为36m.
(2)前锋队员至少经过6.5s能追上足球.

点评 本题考查运动学中的追及问题,关键理清物体的运动规律,结合运动学公式灵活求解,有时运用推论求解会使问题更加简捷.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:解答题

1.某物理小组利用图甲示装置来验证机械能守恒定律,近似光滑的弧形轨道竖直固定在水平桌面上,轨道下端切线保持水平.将小滑块从轨道上距桌面H高度处由静止释放,滑块离开轨道后落至地面上P点.

(1)若小滑块质量为m,则滑块从释放到经过轨道末端,减少的重力势能△Ep=mgH.为测量这一过程中动能的增加量,小组内出现额两种方案:
方案一:测出落点P到弧形轨道末端的水平距离s,再用秒表测出滑块刚离开弧形轨道末端时落到点P的时间t,则滑块增加的动能△Ek=$\frac{1}{2}$m${(\frac{s}{t})}^{2}$(用题干所给符合表示);
方案二::测出落点P到弧形轨道末端的水平距离s和桌面到地面的高度h,则滑块增加的动能△Ek=$\frac{m{gs}^{2}}{4h}$(用题中所给符号表示);
分析对比以上两种方案,你觉得本实验的最佳方案是方案二,原因是滑块刚离开弧形轨道末端时落到点P的时间较短,测量误差较大.
(2)考虑到阻力原因,△Ep和对应的△Ek之间的关系是:△Ep>△Ek(填“>、=或<”)
(3)实验中,若结合方案二,可改变H,多次重复操作,测出H和对应的s,某同学以H为横轴、s2为纵轴,在坐标平面描点连线得到了滑块的H-s2图象,若滑块在弧形轨道上运动时机械能守恒,则H-s2图象应该是图乙中的哪个?

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

2.一个物体受到两个公点力的作用,F1=8N,F2=5N.保持两个力的大小不变,改变F1、F2的方向,则两个力的合力大小不可能的是(  )
A.4 NB.3 NC.1 ND.10 N

查看答案和解析>>

科目:高中物理 来源: 题型:填空题

19.(1)下列说法正确的是AB
A.温度是分子平均动能的标志
B.从微观角度看,气体对容器的压强是大量气体分子对容器的碰撞引起的
C.固体可以分为晶体和非晶体,晶体和非晶体都具有确定的熔点
D.布朗运动证明,组成固体小颗粒的分子在做永不停息的无规则运动
(2)如图所示为分子势能Ep随分子间距离r变化的关系图线(取r→∞时,Ep=0),横坐标上有两个分子甲和乙,将甲分子固定在坐标原点,乙分子从无穷远处无初速释放,下列说法正确的是BD
A.乙分子到达N点前,所受分子力表现为引力且逐渐增大
B.乙分子到达N点时,加速度为零,速度为最大值
C.乙分子到达M点时,加速度为零,速度为最大值
D.乙分子在从N到M的运动过程中,速度将一直减小.

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

6.伽利略是物理学发展史上最伟大的科学家之一,如图是伽利略采用“冲淡”重力的方法,研究自由落体运动时所做的铜球沿斜面运动实验的示意图.若某同学重做此实验,让小球从长度为l、倾角为θ的斜面顶端由静止滑下,在不同的条件下进行实验,不计空气阻力及小球的转动,摩擦阻力恒定,下列叙述正确是(  )
A.l一定时,θ角越大,小球运动的加速度越小
B.l一定时,θ角越大,小球运动时的惯性越大
C.l一定时,θ角越大,小球从顶端运动到底端时的速度越大
D.θ角一定时,小球从顶端运动到底端所需时间与l成正比

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

16.做曲线运动的物体在运动过程中,下列说法正确的是(  )
A.速度方向一定改变B.一定产生加速度
C.加速度方向一定改变D.速度大小一定改变

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

3.如图,R2=9Ω,R3=18Ω,电源内电阻r=1Ω,S断开并且R1为2Ω时,电压表读数为4.5V,当S合上时,为了让电压表读数仍为4.5V,R1应调到多大?

查看答案和解析>>

科目:高中物理 来源: 题型:填空题

20.加速度与物体所受合外力和质量间的关系时,采用如图1所示的实验装置,小车及车中的砝码质量用M表示,盘及盘中的砝码质量用m表示,小车的加速度可由小车后拖动的纸带由打点计数器打上的点计算出:

(1)当M与m的大小关系满足M>>m时,才可以认为绳子对小车的拉力大小等于盘和砝码的重力.
(2)一组同学在先保持盘及盘中的砝码质量一定,探究小车的加速度与质量的关系,以下做法正确的是:B
A.平衡摩擦力时,应将盘及盘中的砝码用细绳通过定滑轮系在小车上
B.每次改变小车的质量时,不需要重新平衡摩擦力
C.实验时,先放开小车,再接通打点计时器电源
D.小车运动的加速度可用天平测出m以及小车质量M,直接用公式 a=mg/M求出.
(3)在保持小车及车中的砝码质量M一定,探究小车的加速度与所受合外力的关系时,由于平衡摩擦力时操作不当,二位同学得到的a-F关系如图2示(a是小车的加速度.F是细线作用于小车的拉力).其原因是平衡摩擦力时长木板的倾角过大.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

1.如图所示,水平轨道PAB与竖直光滑圆弧轨道相连,出口为水平轨道BE,其中,PA段光滑,AB段粗糙,动摩擦因数μ=0.1,AB段长度L=2m,半径R=1m,轻质弹簧左端固定于P点,右端处于自由状态时位于A点,现用力推质量m=2kg的小滑块,使其缓慢压缩弹簧(即推力做功全部转化为弹簧的弹性势能),当推力做功W=20J时撤去推力,重力加速度取g=10m/s2
(1)判断小滑块能否到达C点,如果能,求出滑块到达C点的速度vc;如果不能,求出滑块能达到的最大高度h;
(2)求滑块第一次到达圆弧轨道最低点B时对轨道的压力;
(3)如果要使小滑块进入圆弧轨道后不能脱离轨道(滑回PAB或从BE滑出),推力做功W应满足的条件.

查看答案和解析>>

同步练习册答案