【题目】在直角坐标系xOy中,第二象限有垂直于纸面的匀强磁场(图中未画出),第一象限三角形OPM区域有如图所示的匀强电场,电场线与y轴的夹角、MP与x轴的夹角均为30°,已知P点的坐标为(9l,0),在以O′为圆心的环状区域内有垂直纸面向里的匀强磁场,外圆与直线MP相切于P点,内外圆的半径分别为l和2l。一质量为m,电荷量为q的正电粒子以速度v0由坐标为(-l,0)的A点沿与y轴平行的方向射入第二象限匀强磁场中,经磁场偏转由坐标为(0,)的B点进入匀强电场,经电场偏转恰由P点进入环状磁场区域,不计粒子重力,求:
(1)第二象限匀强磁场磁感应强度的大小;
(2)匀强电场的电场强度大小;
(3)要使粒子在环状磁场区域内做完整的圆周运动,求环状区域匀强磁场的磁感应强度的取值范围。
科目:高中物理 来源: 题型:
【题目】如图所示,由粗细均匀、同种金属导线构成的正方形线框abcd放在光滑的水平桌面上,线框边长为L,其中ab段的电阻为R.在宽度也为L的区域内存在着磁感应强度为B的匀强磁场,磁场的方向竖直向下.线框在水平拉力的作用下以恒定的速度v通过匀强磁场区域,线框始终与磁场方向垂直且无转动.求:
(1)在线框的cd边刚进入磁场时,bc边两端的电压Ubc;
(2)为维持线框匀速运动,水平拉力的大小F;
(3)在线框通过磁场的整个过程中,bc边金属导线上产生的热量Qbc.
查看答案和解析>>
科目:高中物理 来源: 题型:
【题目】要测绘一个标有“3V,0.6W”小灯泡的伏安特性曲线,灯泡两端的电压需要由零逐渐增加到3V,并便于操作.已选用的器材有:
电池组(电动势为4.5V,内阻约1Ω):
电流表(量程为0~250mA.内阻约5Ω);
电压表(量程为0~3V.内阻约3kΩ):
开关一个、导线若干.
①实验中所用的滑动变阻器应选下列中的______(填字母代号).
A.滑动变阻器(最大阻值20Ω,额定电流1A)
B.滑动变阻器(最大阻值1750Ω,额定电流0.3A)
②实验的电路图应选用下列的图______(填字母代号).
③实验得到小灯泡的伏安特性曲线如图所示.如果将这个小灯泡接到电动势为1.5V,内阻为5Ω的电源两端,小灯泡消耗的功率是______W.
查看答案和解析>>
科目:高中物理 来源: 题型:
【题目】某条电场线是一条直线,上边依次有O、A、B、C四个点,相邻两点间距离均为d,以O点为坐标原点,沿电场强度方向建立x轴,该电场线上各点电场强度E随x的变化规律如图所示。一个带电量为+q的粒子,从O点由静止释放,仅受电场力作用。则( )
A.若O点的电势为零,则A点的电势为
B.粒子从A到B做匀速直线运动
C.粒子在OA段电势能减少量小于BC段电势能减少量
D.粒子运动到B点时动能为
查看答案和解析>>
科目:高中物理 来源: 题型:
【题目】如图甲所示,为了测量滑块与木板间的动摩擦因数,某同学将带有滑轮的长木板放置在水平桌面上,在靠近滑轮的B处固定一个光电门,用质量为m的重物通过细线(与长木板平行)与质量为M的滑块(带遮光条)连接,细线的长度小于重物离地面的高度。将滑块从A点由静止释放,测出A、B之间的距离s和遮光条经过光电门时的遮光时间t。保持滑块和悬挂的重物的质量不变,改变释放点A与B间的距离s,多次测量最终完成实验。建立坐标系,描出图线如图乙所示,求得图线的斜率为k,则滑块与木板间的动摩擦因数μ=____(用斜率k、重力加速度g、遮光条的宽度d、滑块质量M和重物质量m表示)。
查看答案和解析>>
科目:高中物理 来源: 题型:
【题目】如图所示两等量异种点电荷,MN为两电荷连线的中垂线,a、b,c三点所在直线平行于两电荷的连线,b点位于MN上,ab=bc,d点位于两电荷的连线上靠近负电荷。则
A.a、c两点场强相同B.b点场强小于d点场强
C.a、c两点电势相同D.b点电势小于d点电势
查看答案和解析>>
科目:高中物理 来源: 题型:
【题目】如图所示,图中实线是一组未标明方向的由点电荷产生的电场线,虚线是某带电粒子通过该电场区域时的运动轨迹,A、B是轨迹上的两点,若带电粒子在运动过程中只受到电场力作用,根据此图不能作出的正确判断是( )
A.带电粒子在A、B两点的受力方向
B.带电粒子所带电荷的电性
C.带电粒子在A、B两点的加速度大小关系
D.带电粒子在A、B两点的速度大小关系
查看答案和解析>>
科目:高中物理 来源: 题型:
【题目】如图所示,a、b、c、d为某一电场中的四个等势面,已知相邻等势面间电势差相等,一个带正电粒子运动过程中只受电场力作用,先后经过M点和N点,则( )
A.电场力对粒子做正功
B.粒子在M点的加速度比N点大
C.四个等势面电势关系为φaφb
φc
φd
D.该粒子在N点的动能较大,电势能较小
查看答案和解析>>
科目:高中物理 来源: 题型:
【题目】1930年劳伦斯提出回旋加速器理论并于1932年制成了世界上第一台回旋加速器,其原理如图所示。两个靠得很近的D形金属盒处在与盒面垂直的匀强磁场中,一氘核()从加速器的某处由静止开始加速。已知D型盒的半径为R,匀强磁场的最大磁感应强度为B,高频交变电源的电压为U、最大工作频率为f,氘核的质量为m、电荷量为q。不计粒子的重力,忽略粒子在电场中的加速时间,不考虑相对论效应。下列说法正确的是
A.氘核从D形金属盒的边缘飞入,在电场中获得能量,氘核的最大动能由高频交变电源的电压U决定,并且随电压U增大而增加
B.高频交变电源的频率为f应该等于,该装置才能正常工作。若将氘核换成氦核(
),必须相应的改变交流电源的频率,否则该装置无法正常工作
C.氘核第1次加速和第2次加速后在磁场中运动的轨道半径之比为1:2
D.当时,氘核的最大动能为
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com