精英家教网 > 高中物理 > 题目详情
两颗靠得较近的天体称为双星.宇宙中有某一对双星,质量分别为m1、m2,它们以两者连线上某点为圆心,各自做匀速圆周运动,已知两双星间距离为L,不考虑其他星球对它们的影响.则星体m1的轨道半径r1=______;和它们运动的周期T=______
【答案】分析:双星以两者连线上某点为圆心,各自做匀速圆周运动,向心力由对方的万有引力提供,而且双星的条件是角速度相同,根据牛顿第二定律隔离两个天体分别研究,再求解星体m1的轨道半径和周期.
解答:解:根据牛顿第二定律得
    对星体m1:G=
    对星体m2:G=
又r1+r2=L
联立解得
  
   T=2πL
故答案为:,2πL
点评:本题是双星问题,与卫星绕地球运动模型不同,两颗星都绕同一圆心做匀速圆周运动,关键抓住条件:周期相同.
练习册系列答案
相关习题

科目:高中物理 来源: 题型:

两颗靠得较近的天体称双星,它们以两者连线上某一点为共同圆心各自做匀速圆周运动,才不至于因彼此之间的万有引力吸引到一起,由此可知,它们的质量与它们的(  )
A、线速度成反比B、角速度成反比C、轨道半径成反比D、所需的向心力成反比

查看答案和解析>>

同步练习册答案