精英家教网 > 高中物理 > 题目详情
我们的银河系的恒星中大约四分之一是双星.某双星由质量不等的星体S1和S2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点C做匀速圆周运动.由天文观察测得其运动周期为T,S1到C点的距离为r1,S1和S2的距离为r,已知引力常量为G.由此可求出S1的质量为(  )
分析:这是一个双星的问题,S1和S2绕C做匀速圆周运动,它们之间的万有引力提供各自的向心力,
S1和S2有相同的角速度和周期,结合牛顿第二定律和万有引力定律解决问题.
解答:解:设星体S1和S2的质量分别为m1、m2
星体S2做圆周运动的向心力由万有引力提供得:G
m1m2
r2
=m2(
T
)2(r-r1)

即 m1=
4π2r2(r-r1)
GT2

故选A.
点评:双星的特点是两个星体周期相等,星体间的万有引力提供各自所需的向心力.
练习册系列答案
相关习题

科目:高中物理 来源: 题型:

(2013?河南模拟)我们的银河系的恒星中大约四分之一是双星.某双星由质量不等的星体S1和S2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点C做匀速圆周运动.由天文观察测得其运动周期为T,S1到C点的距离为r1,S1和S2的距离为r,已知引力常量为G.由此可求出S2的质量为(  )

查看答案和解析>>

科目:高中物理 来源: 题型:

我们的银河系的恒星中大约四分之一是双星.某双星由质量不等的星体A和B构成,两星在相互之间的万有引力作用下绕两者连线上某一定点C做匀速圆周运动.由天文观察测得其运动周期为T,A和B的距离为r,已知引力常量为G.由此可求出两星的质量之和为
 

查看答案和解析>>

科目:高中物理 来源: 题型:

我们的银河系的恒星中大约四分之一是双星.某双星由质量不等的星体S1和S2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点C做匀速圆周运动.那么S1、S2做匀速圆周运动的(  )
A、角速度与其质量成反比B、线速度与其质量成反比C、向心力与其质量成反比D、半径与其质量的平方成反比

查看答案和解析>>

科目:高中物理 来源: 题型:

我们的银河系的恒星中大约四分之一是双星.某双星由质量不等的星体S1和S2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点C做匀速圆周运动.由天文观察测得其运动周期为T,S1到C点的距离为r1,S1和S2的距离为r,万有引力常量为G.由此可求出S2的质量为(    )

A.                B.

C.                            D.

查看答案和解析>>

同步练习册答案