精英家教网 > 高中物理 > 题目详情
1.某科枝小组设计了如图所示的滑道,滑道由倾斜滑道MN和水平滑道ND平滑连接,起点M距水平地面的高度H=0.8m,起点M与末端点D的水平距离d=1.0m,物块与滑道间的动摩擦因数均为μ=0.20.设计滑道时,要求保持H,d不变,可调节水平滑道ND的高度,使物块从滑道末端D点抛出后落到水平地面的水平位移最大,求:
(1)水平滑道ND距水平地面的高度;
(2)物块从D点抛出的最大水平位移.

分析 对滑块进行受力分析,然后根据功的公式求出M到N过程中克服摩擦力做功的大小.然后对整个过程运用动能定理列式求解滑块到达D的速度;最后结合平抛运动的规律列式后联立得到射程的表达式,然后再求解最大值对应的轨道ND福轨道以及最大射程.

解答 解:设D点的高度是h,MN与水平方向之间的夹角是θ,滑块从M滑到D的过程中,克服摩擦力做功为:
${W}_{f}=μmgcosθ(\frac{H-h}{sinθ})+μmg(d-\frac{H-h}{tanθ})=μmgd$
滑块从M滑到D的过程中,重力做功:WG=mg(H-h)
根据动能定理有:$mg(H-h)-μmgd=\frac{1}{2}m{v}^{2}-0$
整理得滑到D点时速度的大小:$v=\sqrt{2g(H-h-μd)}$                    
在从D点抛出至落到水面的过程中,设平抛运动的时间为t,
$h=\frac{1}{2}g{t}^{2}$
t=$\sqrt{\frac{2h}{g}}$,
滑块在水平方向的位移:
x=vt=$\sqrt{2g(H-h-μd)}•\sqrt{\frac{2h}{g}}$=2$\sqrt{h(H-h-μd)}$=$2\sqrt{h(0.6-h)}$.
所以当h=0.3m时,水平位移最大,最大为:$x=2×\sqrt{0.3×(0.6-0.3)}=0.6$m.
答:(1)水平滑道ND距水平地面的高度是0.3m;(2)物块从D点抛出的最大水平位移是0.6m.

点评 本题关键是分析清楚物体的运动规律,然后运用动能定理和平抛运动的规律列式求解.难度中等.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:多选题

11.图甲为小型旋转电枢式交流发电机,电阻为r=2Ω矩形线圈在磁感应强度为B的匀强磁场中,绕垂直于磁场方向的固定轴OO′匀速转动,线圈的两端经集流环和电刷与右侧电路连接,右侧电路中滑动变阻器R的最大阻值为R0=$\frac{40}{7}$Ω,滑动片P位于滑动变阻器中央,定值电阻R1=R0、R2=$\frac{{R}_{0}}{2}$,其它电阻不计.从线圈平面与磁场方向平行时开始计时,闭合开关S,线圈转动过程中理想交流电压表示数是10V,图乙是矩形线圈磁通量Φ随时间t变化的图象.则下列正确的是(  )
A.电阻R2上的热功率为$\frac{5}{7}$W
B.0.02 s时滑动变阻器R两端的电压瞬时值为零
C.线圈产生的e随时间t变化的规律是e=10$\sqrt{2}$cos100πt(V)
D.线圈开始转动到t=$\frac{1}{600}$s的过程中,通过R1的电荷量为$\frac{\sqrt{2}}{200π}$C

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

12.在利用重锤下落验证机械能守恒定律的实验中:
(1)动能增加量略小于重力势能减少量的主要原因是C.
A.重物下落的实际距离大于测量值                          B.重物下落的实际距离小于测量值
C.重物下落受到阻力                                      D.重物的实际末速度大于计算值
(2)有一条纸带,各点距A点的距离分别为d1,d2,d3,…,如图1所示,各相邻点间的时间间隔为T,当地重力加速度为g.要用它来验证C和F两点处机械能是否守恒,从C运动到F的过程中,若有关系式($\frac{{d}_{6}-{d}_{4}}{2T}$)2-($\frac{{d}_{3}-{d}_{1}}{2T}$)2=2g(d5-d2)时(用图中的物理量符号表示),则机械能守恒.

(3)读出图中游标卡尺(图2a)(10分度)和螺旋测微器(图2b)的读数:游标卡尺的读数为29.8mm;螺旋测微器的读数为6.701-6.705mm.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

9.“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O,外圆弧面AB的半径为L,电势为φ1,内圆弧面CD的半径为$\frac{L}{2}$,电势为φ2.足够长的收集板MN平行边界ACDB,O到MN板的距离OP为L.假设太空中漂浮着质量为m,电量为q的带正电粒子,它们能均匀地吸附到AB圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子引力的影响.

(1)求粒子到达O点时速度的大小:
(2)如图2所示,在边界ACDB和收集板MN之间加一个半圆形匀强磁场,圆心为O,半径为L磁场方向垂直纸面向内,则发现从AB圆弧面收集到的粒子有$\frac{2}{3}$能打到MN板上(不考虑过边界ACDB的粒子再次返回),求所加磁感应强度的大小;
(3)随着所加磁场大小的变化,试定量分析收集板MN上的收集效率η与磁感应强度B的关系.若收集效率是0,则磁感应强度B应满足什么条件?

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

16.“强台风”是一个巨大的能量库,其风速都在17m/s以上,甚至在60m/s以上.据测,当风力达到12级时,垂直于风向平面上每平方米风力可达数千牛顿.台风登陆以后,会给沿海居民的生产和生活带来一定的危害.不少在台风登陆地区做新闻报道的记者,需要用绳子系在腰上才能保证不被台风吹走.大风真的能把人吹走吗?为方便研究这一问题,我们只考虑一种简单情况,即看大风能不能把人吹的在地面上滑动.设某次台风登陆时的风力为9级,方向水平风速大小可达到22m/s,经过流体阻力测算,在经过一个身高为一米七左右人体的面积时所产生的水平风力约为164N.假设这个人重60kg,台风来临时人站立在水平地面上,人与地面间的滑动摩擦系数为0.26.试通过计算分析:当风速达到22m/s时,人能不能被吹动?

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

6.如图所示,固定不动的足够长斜面倾角θ=37°,一个物体以v0=10m/s的初速度从斜面A点处开始自行沿斜面向上运动,加速度大小为a1=10m/s2.(g=10m/s2,sin37°=0.6,cos37°=0.8)
(1)物体沿斜面上升的最大距离;
(2)物体与斜面间动摩擦因数;
(3)若要通过调整物体的初速度使物体能够在(2+2$\sqrt{5}$)s≤t≤(4+4$\sqrt{5}$)s时间内返回A位置,求物体初速度的范围.

查看答案和解析>>

科目:高中物理 来源: 题型:填空题

13.如图,某质点从O点开始做匀减速直线运动,在连续相等时间依次经过A,B,位移分别为S1,S2,最终到C速度减小到零,则BC的距离是$\frac{({s}_{1}+{s}_{2})^{2}}{{4(s}_{1}-{s}_{2})}$-s2;.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

7.美国物理学家密立根于1910 年利用如图所示的实验装置,确定了电荷量的不连续性,并测定了元电荷的数值.

(1)若某次实验中,一质量为m的油滴,在场强为E的两金属板之间恰好处于平衡状态.则油滴所带电荷量q=$\frac{mg}{E}$(已知当地的重力加速度为g)
(2)对许多油滴进行测定,发现各个油滴所带电荷量都是某一最小电荷量的整数倍.密立根断定这一最小电荷量就是电子的电荷量,经过计算得出其数值为1.6×10-19C.则下列说法中说法不正确的是BD
A.在某次实验中,测得油滴所带电荷量为3.2×10-17C
B.在某次实验中,测得油滴所带电荷量为2.3×10-17C
C.在某次实验中,若只将两金属板的间距变大,则原来处于静止状态的油滴将向下运动
D.在某次实验中,若只将两金属板的间距变大,则原来处于静止状态的油滴将向上运动.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

8.一根长l0=50cm的轻质弹簧下竖直悬挂一个重G=100N的物体,弹簧的长度为l1=70cm.则弹簧的劲度系数k为多少?若再挂一重为200N的重物,弹簧的伸长量为多少?

查看答案和解析>>

同步练习册答案