ÈçͼËùʾ£¬Ò»Á¾ÖÊÁ¿Îª1.5kgµÄС³µ¾²Ö¹Ôڹ⻬ˮƽÃæÉÏ£¬Ò»¸öÖÊÁ¿Îª0.50kgµÄľ¿é£¬ÒÔ2.0m/sµÄËÙ¶Èˮƽ»¬ÉÏС³µ£¬×îºóÓëС³µÒÔÏàͬµÄËÙ¶ÈÔ˶¯£®Ð¡³µÉϱíÃæˮƽ£¬Ä¾¿éÓë³µÉϱíÃæµÄ¶¯Ä¦²ÁÒòÊýÊÇ0.20£®gÈ¡10m/s2£¬Çó
£¨1£©Ä¾¿éÓëС³µ¹²Í¬Ô˶¯µÄËٶȵĴóС£»
£¨2£©Ä¾¿éÔÚС³µÉÏÏà¶Ô»¬ÐеÄʱ¼ä£»
£¨3£©ÉèС³µÓë¹â»¬Ë®Æ½Ãæ×ã¹»³¤£¬ÈôˮƽÃæÓÒ¶ËÒ²ÓÐÒ»¸ß¶ÈÓë×ó¶ËÒ»ÑùµÄƽ̨£¬ÇÒС³µÓëÁ½±ßƽ̨Åöײ¹ý³ÌÖоùûÓÐÄÜÁ¿Ëðʧ£¬Çó´Óľ¿é»¬ÉÏС³µ¿ªÊ¼µ½Ä¾¿éÓëС³µµÚn¹²Í¬Ô˶¯µÄʱ¼ä¼°Ä¾¿éÔÚС³µÉÏ»¬ÐеÄ·³Ì£®
·ÖÎö£º£¨1£©¸ù¾ÝÔ˶¯¹ý³ÌÖж¯Á¿Êغ㼴¿ÉÇó½â£»
£¨2£©¸ù¾Ý¶¯Á¿¶¨Àí¼´¿ÉÇó½â£»
£¨3£©·ÖMÓëmµÄ´óС¹Øϵ·ÖÁ½ÖÖÇé¿ö½øÐÐÌÖÂÛ£¬¸ù¾Ý¶¯Á¿Êغ㶨Âɼ°¶¯Äܶ¨ÀíÇó³ö»¬¶¯Â·³ÌµÄͨÏ¸ù¾Ý¶¯Á¿¶¨ÀíÇó³öʱ¼äµÄͨÏÔÙ½áºÏÊýѧ֪ʶ¼´¿ÉÇó½â£®
½â´ð£º½â£º£¨1£©¸ù¾ÝÔ˶¯¹ý³ÌÖж¯Á¿ÊغãµÃ£º
mv0=£¨M+m£©v1
½âµÃ£ºv1=
m
M+m
v0
=0.5m/s
£¨2£©¸ù¾Ý¶¯Á¿¶¨ÀíµÃ£º
¦Ìmgt=Mv1-0
t1=
Mv0
(M+m)¦Ìg
=0.75s
£¨3£©ÈôM£¾m£¬´ÓµÚÒ»´Îľ°åÒÔv1·´µ¯¿ªÊ¼£¬ÓÐ
Mv1-mv1=£¨M+m£©v2
Mv2-mv2=£¨M+m£©v3¡­
Mvn-1-mvn-1=£¨M+m£©vn
½âµÃ£º
v2=
M-m
M+m
v
1

v3=
M-m
M+m
v
2

¡­
vn=
M-m
M+m
v
n-1
=(
M-m
M+m
)
n-1
m
M+m
v
0

¸ù¾Ý¶¯Äܶ¨ÀíµÃ£º
¦Ìmgx1=
1
2
mv02-
1
2
(M+m)v12

¦Ìmgx2=
1
2
mv12-
1
2
(M+m)v22

¡­
¦Ìmgxn=
1
2
mvn2-
1
2
(M+m)vn-12

½âµÃ£º
x1=
M
2¦Ìg(M+m)
v
0
2

x2=
2M
¦Ìg(M+m)
v
1
2

x3=
2M
¦Ìg(M+m)
v
2
2
=
2M
¦Ìg(M+m)
(
M-m
M+m
)
2
v
1
2


xn=
2M
¦Ìg(M+m)
v
n-1
2
=
2M
¦Ìg(M+m)
(
M-m
M+m
)
2(n-2)
v
1
2


x2£¬x3£¬x4£¬¡­xnÊÇÒ»¸öÊ×ÏîΪ
2M
¦Ìg(M+m)
v
2
1

¹«±ÈΪ(
M-m
M+m
)
2
µÄµÈ±ÈÊýÁУ¬¹²ÓÐn-1Ïî
Sn=x1+
2M
¦Ìg(M+m)
v
2
1
n
n=2
(
M-m
M+m
)
2(n-2)

=x1+
2M
¦Ìg(M+m)
v
2
1
?
1-(
M-m
M+m
)
2(n-1)
1-(
M-m
M+m
)
2

=
M
2¦Ìg(M+m)
v
2
0
+
2M
¦Ìg(M+m)
v
2
1
?
1-(
M-m
M+m
)
2(n-1)
1-(
M-m
M+m
)
2

=
M
2¦Ìg(M+m)
v
2
0
+
2M
¦Ìg(M+m)
?(
m
M+m
)
2
v
2
0
?
1-(
M-m
M+m
)
2(n-1)
1-(
M-m
M+m
)
2

=
M
v
2
0
2¦Ìg(M+m)
+
m
v
2
0
2¦Ìg(M+m)
?[1-(
M-m
M+m
)
2(n-1)
]

ÔÚ°åÉÏ»¬ÐеÄʱ¼ä£¨²»°üº¬´Ó¹²ËÙÖÁÓëƽ̨ÅöײµÄʱ¼ä£©
-¦Ìmgt2=Mv2-Mv1
-¦Ìmgt3=Mv3-Mv2¡­
-¦Ìmgtn=Mvn-Mvn-1
t2=
2M
¦Ìg(M+m)
v
1

t3=
2M
¦Ìg(M+m)
v
2
=
2M
¦Ìg(M+m)
 
?
M-m
M+m
v
1

tn=
2M
¦Ìg(M+m)
v
n-1
=tn=
2M
¦Ìg(M+m)
 
?(
M-m
M+m
)
n-2
v
1


t2£¬t3£¬t4£¬¡­tnÊÇÒ»¸öÊ×ÏîΪ
2M
¦Ìg(M+m)
v1
¹«±ÈΪ (
M-m
M+m
)
µÄµÈ±ÈÊýÁУ¬¹²ÓÐn-1Ïî
tn=t1+
2M
¦Ìg(M+m)
v1
n
n=2
(
M-m
M+m
)
n-2
=t1+
2M
¦Ìg(M+m)
v1?
1-(
M-m
M+m
)
(n-1)
1-(
M-m
M+m
)

=
Mv0
(M+m)¦Ìg
+
2M
¦Ìg(M+m)
v1?
1-(
M-m
M+m
)
(n-1)
1-(
M-m
M+m
)

=
Mv0
(M+m)¦Ìg
+
2M
¦Ìg(M+m)
?
m
M+m
v0?
1-(
M-m
M+m
)
(n-1)
1-(
M-m
M+m
)

=
Mv0
¦Ìg(M+m)
?[2-(
M-m
M+m
)
(n-1)
]

ͬÀí¿ÉµÃ£ºÈôM£¼m£¬
x2£¬x3£¬x4£¬¡­xnÊÇÒ»¸öÊ×ÏîΪ
2M
¦Ìg(M+m)
v
2
1

¹«±ÈΪ(
m-M
m+M
)
2
µÄµÈ±ÈÊýÁУ¬
¹²ÓÐn-1Ïî
Sn=x1+
2M
¦Ìg(M+m)
v
2
1
n
n=2
(
m-M
m+M
)
2(n-2)

=x1+
2M
¦Ìg(M+m)
v
2
1
n
n=2
(
m-M
m+M
)
2(n-2)

=
M
2¦Ìg(M+m)
v
2
0
+
2M
¦Ìg(M+m)
v
2
1
?
1-(
m-M
m+M
)
2(n-1)
1-(
m-M
m+M
)
2

=
M
2¦Ìg(M+m)
v
2
0
+
2M
¦Ìg(M+m)
?(
m
M+m
)
2
v
2
0
?
1-(
m-M
m+M
)
2(n-1)
1-(
m-M
m+M
)
2

=
M
v
2
0
2¦Ìg(M+m)
+
m
v
2
0
2¦Ìg(M+m)
?[1-(
m-M
m+M
)
2(n-1)
]

ÔÚ°åÉÏ»¬ÐеÄʱ¼ä£¨²»°üº¬´Ó¹²ËÙÖÁÓëƽ̨ÅöײµÄʱ¼ä£©
-¦Ìmgt2=mv2-mv1
-¦Ìmgt3=mv3-mv2
¡­
-¦Ìmgtn=mvn-mvn-1
t2=
2m
¦Ìg(m+M)
 
v1
t2=
2m
¦Ìg(m+M)
 
v
2
=
2m
¦Ìg(m+M)
 
?
m-M
m+M
v1
ËùÒÔtn=
2m
¦Ìg(m+M)
 
v
n-1
=
2m
¦Ìg(m+M)
 
?(
m-M
m+M
)
n-2
v1

t2£¬t3£¬t4£¬¡­tnÊÇÒ»¸öÊ×ÏîΪ
2m
¦Ìg(m+M)
v1
£¬¹«±ÈΪ (
m-M
m+M
)
µÄµÈ±ÈÊýÁУ¬¹²ÓÐn-1Ïî
tn=t1+
2m
¦Ìg(m+M)
v1
n
n=2
(
m-M
m+M
)
n-2
=t1+
2m
¦Ìg(m+M)
v1?
1-(
m-M
m+M
)
(n-1)
1-(
m-M
m+M
)

=
Mv0
(M+m)¦Ìg
+
2m
¦Ìg(m+M)
v1?
1-(
m-M
m+M
)
(n-1)
1-(
m-M
m+M
)

=
Mv0
(M+m)¦Ìg
+
2m
¦Ìg(m+M)
?
m
M+m
v0?
1-(
m-M
m+M
)
(n-1)
1-(
m-M
m+M
)

=
Mv0
(M+m)¦Ìg
+
m2v0
¦ÌgM(m+M)
?[1-(
m-M
m+M
)
(n-1)
]
£®
´ð£º£¨1£©Ä¾¿éÓëС³µ¹²Í¬Ô˶¯µÄËٶȵĴóСΪ0.5m/s£»
£¨2£©Ä¾¿éÔÚС³µÉÏÏà¶Ô»¬ÐеÄʱ¼äΪ0.75s£»
£¨3£©´Óľ¿é»¬ÉÏС³µ¿ªÊ¼µ½Ä¾¿éÓëС³µµÚn¹²Í¬Ô˶¯µÄʱ¼äΪ
Mv0
¦Ìg(M+m)
?[2-(
M-m
M+m
)
(n-1)
]
»ò
Mv0
(M+m)¦Ìg
+
m2v0
¦ÌgM(m+M)
?[1-(
m-M
m+M
)
(n-1)
]
£¬Ä¾¿éÔÚС³µÉÏ»¬ÐеÄ·³ÌΪ
M
v
2
0
2¦Ìg(M+m)
+
m
v
2
0
2¦Ìg(M+m)
?[1-(
M-m
M+m
)
2(n-1)
]
»ò
M
v
2
0
2¦Ìg(M+m)
+
m
v
2
0
2¦Ìg(M+m)
?[1-(
m-M
m+M
)
2(n-1)
]
£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁ˶¯Á¿Êغ㶨ÂÉ£¬¶¯Á¿¶¨Àí£¬¶¯Äܶ¨ÀíµÄÓ¦Ó㬵ÚÈýÎÊÒªÏÈÇó³öͨÏÔÙ½áºÏÊýѧ֪ʶÇó½â£¬ÄѶȺܴó£¬ÒªÇó½Ï¸ß£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º

ÈçͼËùʾ£¬Ò»Á¾ÖÊÁ¿ÎªmµÄÆû³µ£¬ÒԺ㶨µÄÊä³ö¹¦ÂÊPÔÚÇã½ÇΪ¦ÈµÄбÆÂÉÏÑØÆÂÔÈËÙÏòÉÏÐÐÊ»£¬Æû³µÊܵ½µÄĦ²Á×èÁ¦ºãΪÆû³µÖØÁ¦µÄK±¶£¨ºöÂÔ¿ÕÆø×èÁ¦£©£¬ÔòÆû³µµÄÇ£ÒýÁ¦´óСΪ
mgsin¦È+kmg
mgsin¦È+kmg
£¬ÉÏÆÂËٶȴóСΪ
P
mgsin¦È+kmg
P
mgsin¦È+kmg
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º

ÈçͼËùʾ£¬Ò»Á¾ÖÊÁ¿Îª500kgµÄÆû³µ¾²Ö¹ÔÚÒ»×ù°ë¾¶Îª50mµÄÔ²»¡Ðι°ÇŶ¥²¿£®£¨È¡g=10m/s2£©
£¨1£©´ËʱÆû³µ¶ÔÔ²»¡Ðι°ÇŵÄѹÁ¦ÊǶà´ó£¿
£¨2£©Èç¹ûÆû³µÒÔ10m/sµÄËٶȾ­¹ý¹°ÇŵĶ¥²¿£¬ÔòÆû³µ¶ÔÔ²»¡Ðι°ÇŵÄѹÁ¦ÊǶà´ó£¿
£¨3£©Æû³µÒÔ¶à´óËÙ¶Èͨ¹ý¹°ÇŵĶ¥²¿Ê±£¬Æû³µ¶ÔÔ²»¡Ðι°ÇŵÄѹÁ¦Ç¡ºÃΪÁ㣿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º

ÈçͼËùʾ£¬Ò»Á¾ÖÊÁ¿Îª 2.0¡Á103 kg µÄÆû³µÔÚƽֱ¹«Â·ÉÏÐÐÊ»£¬ÈôÆû³µÐÐÊ»¹ý³ÌÖÐËùÊÜ×èÁ¦ºãΪf=2.5¡Á103N£¬ÇÒ±£³Ö¹¦ÂÊΪ 80kw Çó£º
£¨l£©Æû³µÔÚÔ˶¯¹ý³ÌÖÐËùÄÜ´ïµ½µÄ×î´óËٶȣ»
£¨2£©Æû³µµÄËÙ¶ÈΪ 5m/s Ê±µÄ¼ÓËٶȣ»
£¨3£©Æû³µµÄ¼ÓËÙ¶ÈΪ0.75m/s2ʱµÄËٶȣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º

ÈçͼËùʾ£¬Ò»Á¾ÖÊÁ¿ÎªMµÄ¿¨³µÑØƽֱµÄ¹«Â·ÐÐÊ»£¬¿¨³µÉÏÔØÒ»ÖÊÁ¿ÎªmµÄ»õÏ䣬»õÏäµ½³µÇ°²¿¾àÀëlÒÑÖª£¬»õÏäÓëµ×°åµÄ¶¯Ä¦ÒòÊýΪu£¬µ±¿¨³µÒÔËÙ¶ÈvÐÐʻʱ£¬ÒòÇ°·½³öÏÖ¹ÊÕ϶øÖƶ¯£¬Öƶ¯ºó»õÏäÔÚ³µÉÏÇ¡ºÃ»¬ÐÐÁ˾àÀël¶øδÓëËÄÅöײ£¬Çó£º
£¨1£©¿¨³µÖƶ¯Ê±¼ä£»
£¨2£©¿¨³µÖƶ¯Ê±ÊܵØÃæµÄ×èÁ¦£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º

ÈçͼËùʾ£¬Ò»Á¾ÖÊÁ¿ÎªMµÄ¿¨³µÑØƽֱ¹«Â·ÒÔËÙ¶Èv0ÔÈËÙÐÐÊ»£¬¿¨³µÉÏÔØÓÐÒ»ÖÊÁ¿ÎªmµÄ»õÏ䣬»õÏäµÄ³µÇ°²¿µÄ¾àÀëΪL£¬»õÏäÓëµ×°åÖ®¼äµÄ¶¯Ä¦²ÁÒòÊýΪ¦Ì£®ÏÖÒòÇ°·½³öÏÖÏÕÇ飬¿¨³µ½ô¼±É²³µ£¬½á¹û·¢ÏÖ»õÎïÔÚ³µÏáÐÐL¾àÀëÇ¡ºÃδÓë³µÏáÇ°²¿ÏàÅö£®Çó£º
£¨1£©»õÏäÔ˶¯µÄ¼ÓËٶȣ»
£¨2£©¿¨³µÖƶ¯Ê±¼ä£»
£¨3£©¿¨³µÔÚ½ô¼±É²³µ¹ý³ÌÊܵ½µØÃæµÄ×èÁ¦£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸