精英家教网 > 高中物理 > 题目详情
14.如图所示,在光滑的水平面上放有一物体M,物体上有一光滑的半圆弧轨道,轨道半径为R,最低点为C,两端A、B等高,现让小滑块m从A点静止下滑,在此后的过程中,则(  )
A.小滑块到达B点时半圆弧轨道的速度为零
B.小滑块到达C点时的动能小于mgR
C.若小滑块与半圆弧轨道有摩擦,小滑块与半圆弧轨道组成的系统在水平方向动量不守恒
D.m从A到B的过程中,M运动的位移为$\frac{mR}{M+m}$

分析 小滑块m从A点静止下滑,物体M与滑块m组成的系统水平方向所受合力为零,系统水平方向动量守恒,竖直方向有加速度,合力不为零,系统动量不守恒.用位移表示平均速度,根据水平方向平均动量守恒定律求出物体M发生的水平位移.

解答 解:A、小滑块m从A点静止下滑,物体M与滑块m组成的系统水平方向所受合力为零,系统水平方向动量守恒,开始时系统水平方向的动量守恒,滑块到达B点时滑块和圆弧轨道的速度相同,由水平方向动量守恒可知,小滑块到达B点时半圆弧轨道的速度为零.故A正确.
B、小滑块到达C点时滑块的重力势能转化为滑块和圆弧轨道的动能,则知到达C点时滑块的动能小于mgR.故B正确.
C、小滑块与半圆弧轨道组成的系统在水平方向不受外力,所以水平方向动量守恒.故C错误.
D、设滑块从A到B的过程中为t,M发生的水平位移大小为x,则m产生的位移大小为2R-x
取水平向右方向为正方向.则根据水平方向平均动量守恒得:
  m$\frac{2R-x}{t}$-M$\frac{x}{t}$=0
解得:x=$\frac{2m}{M+m}$R,故D错误;
故选:AB

点评 分析清物体运动过程,该题属于水平方向动量守恒的类型,知道系统某一方向动量守恒的条件,求解两个物体的水平位移时,注意要以地面为参照物.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:选择题

4.如图所示,水平地面上叠放着物体A、B,在力F作用下A、B仍保持静止,则(  )
A.AB间摩擦力等于零,B与地面间的摩擦力等于F
B.AB间摩擦力等于F,B与地面间的摩擦力等于零
C.AB间,B与地面间的摩擦力都等于零
D.AB间,B与地面间的摩擦力都等于F

查看答案和解析>>

科目:高中物理 来源: 题型:实验题

5.某同学为探究恒力做功和物体动能变化间的关系,采用了如图1所示的“探究物体加速度与物体质量、受力之间关系”的实验装置.

(1)实验时,该同学想用钩码的重力表示滑块受到的合力,为了减小这种做法带来的实验误差,你认为在实验中应该采取的两项措施是平衡摩擦力和钩码质量远小于滑块质量.
(2)如图2所示是实验中得到的一条纸带,其中A、B、C、D、E、F是连续的六个计数点,相邻计数点间的时间间隔为T,相邻计数点间距离已在图中标出,测出滑块的质量为M,钩码的总质量为m.从打B点到打E点的过程中,为达到实验目的,该同学应该寻找mg(x2+x3+x4)和$\frac{1}{2}M{(\frac{{x}_{4}+{x}_{5}}{2T})}^{2}-\frac{1}{2}M{(\frac{{x}_{1}+{x}_{2}}{2T})}^{2}$之间的数值关系(用题中和图中的物理量符号表示).

查看答案和解析>>

科目:高中物理 来源: 题型:实验题

2.某科技兴趣小组用下列方法测量手机锂电池的电动势和内阻.
(1)在电流表和电压表内阻均未知的情况下,考虑到电流表和电压表内阻的影响,选择如图1的乙、丁两图电路测电源内阻误差较小.

(2)首先用多用电表的直流电压10V挡粗略的测量了锂电池的电动势,由图1可知锂电池的电动势约为3.8V.
(3)某同学选择合适的电路,测得多组路端电压U和对应总电流I的数据,描点、连线如图2.则该电池内阻为1.7Ω.(结果保留2位有效数字)

查看答案和解析>>

科目:高中物理 来源: 题型:实验题

9.某实验小组利用无线力传感器和光电门传感器探究“动能定理”.将无线力传感器和挡光片固定在小车上,用不可伸长的细线通过一个定滑轮与重物G相连,无线力传感器记录小车受到拉力的大小.在水平轨道上A、B两点各固定一个光电门传感器,用于测量小车的速度v1和v2,如图所示.在小车上放置砝码来改变小车质量,用不同的重物G来改变拉力的大小.

 次数 M/kg|v22-v12|/(m2/s-2△E/J F/N W/J
 1 0.500 0.760 0.190 0.400 0.200
 2 0.500 1.65 0.413 0.840 0.420
 3 0.500 2.40△E2 1.22 W2
实验主要步骤如下:
(1)测量小车和拉力传感器的总质量M1.正确连接所需电路.调节导轨两端的旋钮改变导轨的倾斜度,用以平衡小车的摩擦力,使小车正好做匀速运动.
(2)把细线的一端固定在力传感器上,另一端通过定滑轮与重物G相连;将小车停在点C,由静止开始释放小车,小车在细线拉动下运动,除了光电门传感器测量速度和力传感器测量拉力的数据以外,还应该记录的物理量为两光电门间的距离L;
(3)改变小车的质量或重物的质量,重复(2)的操作.
(4)表格中M是M1与小车中砝码质量之和,△E为动能变化量,F是拉力传感器的拉力,W是F在A、B间所做的功.表中的△E3=0.600J,W3=0.610J(结果保留三位有效数字).

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

19.如图所示为某一带电粒子在匀强磁场中穿过一薄板前后的运动轨迹.磁场方向与纸面垂直,未画出.若粒子电荷量恒定不变,则下列说法中正确的是(  )
A.粒子带正电,自下向上穿过薄板B.粒子带负电,自上向下穿过薄板
C.匀强磁场方向垂直纸面向外D.磁场方向无法确定

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

6.我国首个月球探测计划“嫦娥工程”将分三个阶段实施,用十年左右时间完成.据悉,我国探月工程设想为三期,简称为“绕、落、回”三步走,在2020年前后完成.目前已进行了第二步.
嫦娥三号探测器于2013年12月2日在中国西昌卫星发射中心成功发射,它的任务是在月球上着陆,并对月球进行科学探测.卫星发射后,先绕地球转3圈,轨道是椭圆轨道,近地点是200km.之后经调速进入月地转移轨道,接近月球时经过三次制动,使其被月球俘获,成为月球卫星,发动机正常关机,“嫦娥三号”进入距月表面约200公里圆轨道.北京时间2013年12月9日,在北京航天飞行控制中心的控制下,“嫦娥三号”卫星主发动机点火成功制动,经过减速阶段,最终成功降落在月球表面,释放月球探测车,开始了对月球的探测工作.
设月球半径为R,嫦娥三号绕月球的轨道半径为r,运动周期为T,引力常数为G,且把它绕月球的运动近似看做是匀速圆周运动.试根据以上已知量,求:
(1)月球的质量;
(2)在某次成功在月球表面上着陆后,一位宇航员拿出一小球,并以一定的初速度V0竖直向上抛出,请问经多长时间小球落回月球表面处?

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

3.拓展三:能源的开发与利用
风能将成为人类大规模开发的一种可再生清洁能源.风力发电机是将风能(气流的动能)转化为电能的装置,其主要部件包括风轮机、齿轮箱、发电机等,如图所示,试分析下列问题.
(1)风轮机叶片旋转所扫过的面积为风力发电机可接受风能的面积.设空气密度为ρ,气流速度v,风轮机叶片长度为r.求t时间内流向风轮机的最大风能Em
(2)一般强风的风速约为v=20m/s,空气密度为1.3kg/m3,如果风力发电机扇叶在空间扫过横截面积为60m2,发电机能将其中风能的4%转化为电能,则发电机电功率的大小约为多少?
(3)已知风力发电机的输出功率p与Em成正比.某风力发电机在风速v1=9m/s时能够输出的电功率P1=540kW.我国某地区风速不低于v2=6m/s的时间每年约为5000小时,试估算这台风力发电机在该地区的最小年发电量是多少千瓦时.

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

8.如图所示,A是静止在赤道上的物体,随地球自转而做匀速圆周运动,B、C是同一平面内两颗人造卫星,B位于离地高度等于地球半径的圆形轨道,C是地球同步卫星,物体A和卫星B、C的线速度大小分别为vA、vB、vC,角速度大小分别为ωA、ωB、ωC,周期大小分别为TA、TB、TC,向心加速度大小分别为aA、aB、aC,则下列关系正确的是(  )
A.vA>vB>vCB.TA=TC>TBC.ωAC>ωBD.aA=aC>aB

查看答案和解析>>

同步练习册答案