本资料来源于《七彩教育网》http://www.7caiedu.cn

第五单元  三角函数的证明与求值

一.选择题

(1) 若6ec8aac122bd4f6e为第三象限,则6ec8aac122bd4f6e的值为                        (    )

     A.3                      B.-3                        C.1                            D.-1

(2) 以下各式中能成立的是                                                                                 (    )

       A.6ec8aac122bd4f6e                           B.6ec8aac122bd4f6e6ec8aac122bd4f6e

C.6ec8aac122bd4f6e6ec8aac122bd4f6e                     D.6ec8aac122bd4f6e6ec8aac122bd4f6e

(3) sin7°cos37°-sin83°cos53°值                                                               (    )

A.6ec8aac122bd4f6e B.6ec8aac122bd4f6e    C.6ec8aac122bd4f6e  D.-6ec8aac122bd4f6e

(4)若函数f(x)=6ec8aac122bd4f6esin6ec8aac122bd4f6ex, x∈[0, 6ec8aac122bd4f6e], 则函数f(x)的最大值是                         (     )

A 6ec8aac122bd4f6e          B 6ec8aac122bd4f6e             C 6ec8aac122bd4f6e         D 6ec8aac122bd4f6e

(5) 条件甲6ec8aac122bd4f6e,条件乙6ec8aac122bd4f6e,那么                        (    )

    A.甲是乙的充分不必要条件                      B.甲是乙的充要条件

C.甲是乙的必要不充分条件                          D.甲是乙的既不充分也不必要条件

(6)6ec8aac122bd4f6e6ec8aac122bd4f6e为锐角a=sin(6ec8aac122bd4f6e),b=6ec8aac122bd4f6e,则ab之间关系为      (    )

A.ab     B.ba C.a=b        D.不确定

(7)(1+tan25°)(1+tan20°)的值是                                                                               (     )

A -2                B  2                C  1            D -1

 

(8) 6ec8aac122bd4f6e为第二象限的角,则必有                                                                             (    )

    A.6ec8aac122bd4f6e6ec8aac122bd4f6e                                      B.6ec8aac122bd4f6e6ec8aac122bd4f6e

C.6ec8aac122bd4f6e6ec8aac122bd4f6e                                          D.6ec8aac122bd4f6e6ec8aac122bd4f6e

(9)在△ABC中,sinA=6ec8aac122bd4f6e,cosB=6ec8aac122bd4f6e,则cosC等于                                     (    )

    A.6ec8aac122bd4f6e       B.6ec8aac122bd4f6e                                C.6ec8aac122bd4f6e6ec8aac122bd4f6e        D.6ec8aac122bd4f6e

 

(10) 若a>b>1, P=6ec8aac122bd4f6e, Q=6ec8aac122bd4f6e(lga+lgb),R=lg 6ec8aac122bd4f6e, 则                       (    )

  A.R<P<Q    B.P<Q<R    C.Q<P<R     D P<R<Q

二.填空题

(11)若tan6ec8aac122bd4f6e=2,则2sin26ec8aac122bd4f6e-3sin6ec8aac122bd4f6ecos6ec8aac122bd4f6e=           

(12)若6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e∈(0,π),则tan6ec8aac122bd4f6e=                 

(13)6ec8aac122bd4f6e,则6ec8aac122bd4f6e范围                   

(14)下列命题正确的有_________。

①若-6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e,则6ec8aac122bd4f6e范围为(-π,π);

②若6ec8aac122bd4f6e在第一象限,则6ec8aac122bd4f6e在一、三象限;

③若6ec8aac122bd4f6e=6ec8aac122bd4f6e6ec8aac122bd4f6e,则m∈(3,9);

6ec8aac122bd4f6e=6ec8aac122bd4f6e6ec8aac122bd4f6e=6ec8aac122bd4f6e,则6ec8aac122bd4f6e在一象限。

 

三.解答题

(15) 已知sin(6ec8aac122bd4f6e6ec8aac122bd4f6e)=-6ec8aac122bd4f6e,cos(6ec8aac122bd4f6e)=6ec8aac122bd4f6e,且6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e,求sin26ec8aac122bd4f6e.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(16) (已知6ec8aac122bd4f6e

6ec8aac122bd4f6e的值.

 

 

 

 

 

 

 

 

(17) 在△ABC中,sinA+cosA=6ec8aac122bd4f6e,AC=2,AB=3,求tgA的值和△ABC的面积.

 

 

 

 

 

 

 

 

 

(18)设关于x的方程sinx+6ec8aac122bd4f6ecosx+a=0在(0, 2π)内有相异二解α、β.

(Ⅰ)求α的取值范围;  (Ⅱ)求tan(α+β)的值.

 

 

 

 

 

 

 

 

 

 

 

 

一选择题:

1.B  

[解析]:∵6ec8aac122bd4f6e为第三象限,∴6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e

2.C 

        [解析]: 若6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e

3.A  

[解析]:sin7°cos37°-sin83°cos53°= sin7°cos37°-cos7°sin37°

=sin(7°- 37°)

4.D  

[解析]:函数f(x)=6ec8aac122bd4f6esin6ec8aac122bd4f6ex, ∵x∈[0, 6ec8aac122bd4f6e],∴6ec8aac122bd4f6ex∈[0, 6ec8aac122bd4f6e],∴6ec8aac122bd4f6esin6ec8aac122bd4f6ex6ec8aac122bd4f6e

5.D  

[解析]:6ec8aac122bd4f6e, 故选D

6.B  

[解析]:∵6ec8aac122bd4f6e6ec8aac122bd4f6e为锐角∴6ec8aac122bd4f6e

又sin(6ec8aac122bd4f6e)=6ec8aac122bd4f6e<6ec8aac122bd4f6e

6ec8aac122bd4f6e

7.B 

[解析]:(1+tan25°)(1+tan20°)=1+6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e

8.A  

[解析]:∵6ec8aac122bd4f6e为第二象限的角

               ∴6ec8aac122bd4f6e角的终边在如图区域内

        ∴6ec8aac122bd4f6e6ec8aac122bd4f6e

6ec8aac122bd4f6e9.A

[解析]:∵ cosB=6ec8aac122bd4f6e,∴B是钝角,∴C就是锐角,即cosC>0,故选A

10.B    

[解析]:∵a>b>1,  ∴lga>0,lgb>0,且6ec8aac122bd4f6e

6ec8aac122bd4f6e<6ec8aac122bd4f6e 故选B

二填空题:

11.6ec8aac122bd4f6e     

[解析]:2sin26ec8aac122bd4f6e-3sin6ec8aac122bd4f6ecos6ec8aac122bd4f6e=6ec8aac122bd4f6e

12.6ec8aac122bd4f6e6ec8aac122bd4f6e      

[解析]: ∵6ec8aac122bd4f6e6ec8aac122bd4f6e>1,且6ec8aac122bd4f6e∈(0,π)∴6ec8aac122bd4f6e∈(6ec8aac122bd4f6e,π)

                  ∴ (6ec8aac122bd4f6e6ec8aac122bd4f6e   ∴2sin6ec8aac122bd4f6ecos6ec8aac122bd4f6e=6ec8aac122bd4f6e

         ∴6ec8aac122bd4f6e+6ec8aac122bd4f6e

                   ∴sin6ec8aac122bd4f6e=6ec8aac122bd4f6e  cos6ec8aac122bd4f6e=6ec8aac122bd4f6e或sin6ec8aac122bd4f6e=6ec8aac122bd4f6e  cos6ec8aac122bd4f6e=6ec8aac122bd4f6e

           tan6ec8aac122bd4f6e=6ec8aac122bd4f6e6ec8aac122bd4f6e

13.6ec8aac122bd4f6e     

[解析]:  ∵6ec8aac122bd4f6e6ec8aac122bd4f6e=6ec8aac122bd4f6e

               ∴6ec8aac122bd4f6e6ec8aac122bd4f6e=6ec8aac122bd4f6e

                  ∴6ec8aac122bd4f6e6ec8aac122bd4f6e

              又6ec8aac122bd4f6e6ec8aac122bd4f6e=6ec8aac122bd4f6e

               ∴6ec8aac122bd4f6e6ec8aac122bd4f6e=6ec8aac122bd4f6e

                  ∴6ec8aac122bd4f6e6ec8aac122bd4f6e

             故6ec8aac122bd4f6e

 

14.②④

[解析]:∵若-6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e,则6ec8aac122bd4f6e范围为(-π,0)∴①错

∵若6ec8aac122bd4f6e=6ec8aac122bd4f6e6ec8aac122bd4f6e,则m∈(3,9)

又由6ec8aac122bd4f6e得m=0或 m=8

∴m=8

故③错

三解答题:

(15) 解:  ∵6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e  ∴6ec8aac122bd4f6e

∵sin(6ec8aac122bd4f6e6ec8aac122bd4f6e)=-6ec8aac122bd4f6e,cos(6ec8aac122bd4f6e)=6ec8aac122bd4f6e   ∴cos(6ec8aac122bd4f6e6ec8aac122bd4f6e)=6ec8aac122bd4f6e  sin(6ec8aac122bd4f6e)=6ec8aac122bd4f6e

6ec8aac122bd4f6e=6ec8aac122bd4f6e.

(16)   解: 由6ec8aac122bd4f6e= 6ec8aac122bd4f6e

=6ec8aac122bd4f6e

6ec8aac122bd4f6e  又6ec8aac122bd4f6e,所以6ec8aac122bd4f6e.

于是

6ec8aac122bd4f6e            ==6ec8aac122bd4f6e=6ec8aac122bd4f6e

(17)解:∵sinA+cosA=6ec8aac122bd4f6ecos(A-45°)=6ec8aac122bd4f6e,  

∴cos(A-45°)= 6ec8aac122bd4f6e.

又0°<A<180°, ∴A-45°=60°,A=105°.

∴tgA=tg(45°+60°)=6ec8aac122bd4f6e=-2-6ec8aac122bd4f6e.

∴sinA=sin105°=sin(45°+60°)=sin45°cos60°+cos45°sin60°=6ec8aac122bd4f6e.

∴SABC=6ec8aac122bd4f6eAC?AbsinA=6ec8aac122bd4f6e?2?3?6ec8aac122bd4f6e=6ec8aac122bd4f6e(6ec8aac122bd4f6e+6ec8aac122bd4f6e).

 (18)解: (Ⅰ)∵sinx+6ec8aac122bd4f6ecosx=2(6ec8aac122bd4f6esinx+6ec8aac122bd4f6ecosx)=2 sin(x+6ec8aac122bd4f6e),  

∴方程化为sin(x+6ec8aac122bd4f6e)=-6ec8aac122bd4f6e.

∵方程sinx+6ec8aac122bd4f6ecosx+a=0在(0, 2π)内有相异二解,

∴sin(x+6ec8aac122bd4f6e)≠sin6ec8aac122bd4f6e=6ec8aac122bd4f6e .

又sin(x+6ec8aac122bd4f6e)≠±1 (∵当等于6ec8aac122bd4f6e和±1时仅有一解), 

∴|-6ec8aac122bd4f6e|<1 . 且-6ec8aac122bd4f6e6ec8aac122bd4f6e. 即|a|<2 且a≠-6ec8aac122bd4f6e

∴  a的取值范围是(-2, -6ec8aac122bd4f6e)∪(-6ec8aac122bd4f6e, 2).       

 (Ⅱ) ∵α、 β是方程的相异解,

 ∴sinα+6ec8aac122bd4f6ecosα+a=0   ①.   

sinβ+6ec8aac122bd4f6ecosβ+a=0      ②.

①-②得(sinα- sinβ)+6ec8aac122bd4f6e( cosα- cosβ)=0.

∴ 2sin6ec8aac122bd4f6ecos6ec8aac122bd4f6e-26ec8aac122bd4f6esin6ec8aac122bd4f6esin6ec8aac122bd4f6e=0, 又sin6ec8aac122bd4f6e≠0,

∴tan6ec8aac122bd4f6e=6ec8aac122bd4f6e.

∴tan(α+β)=6ec8aac122bd4f6e=6ec8aac122bd4f6e.

 

 

 

 

 

本资料来源于《七彩教育网》http://www.7caiedu.cn


同步练习册答案