精英家教网 > 试题搜索列表 >《平面直角坐标系》全章教学目标

《平面直角坐标系》全章教学目标答案解析

科目:czsx 来源: 题型:

如图,在平面直角坐标系xoy内,点P在直线y=
1
2
x
上(点P在第一象限),过点P作PA⊥x轴,垂足为点A,且OP=2
5

(1)求点P的坐标;  
(2)如果点M和点P都在反比例函数y=
k
x
(k≠0)
图象上,过点M作MN⊥x轴,垂足为点N,如果△MNA和△OAP全等(点M、N、A分别和点O、A、P对应),求点M的坐标.

查看答案和解析>>

科目:czsx 来源: 题型:

如图,现有两块全等的直角三角形纸板Ⅰ,Ⅱ,它们两直角边的长分别为1和2.将它们分别放置于平面直角坐标系中的△AOB,△COD处,直角边OB,OD在x轴上.一直尺精英家教网从上方紧靠两纸板放置,让纸板Ⅰ沿直尺边缘平行移动.当纸板Ⅰ移动至△PEF处时,设PE,PF与OC分别交于点M,N,与x轴分别交于点G,H.
(1)求直线AC所对应的函数关系式;
(2)当点P是线段AC(端点除外)上的动点时,试探究:
①点M到x轴的距离h与线段BH的长是否总相等?请说明理由;
②两块纸板重叠部分(图中的阴影部分)的面积S是否存在最大值?若存在,求出这个最大值及S取最大值时点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:czsx 来源: 题型:

如图1,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为2,若△AFG绕点旋转,AF、AG与边BC的交点分别为点D、E(点D不与点B重合,点E不与点C重合).
(1)请在图1中找出两对相似而不全等的三角形,并选择其中一对进行证明;
(2)△ABC的斜边BC所在的直线为x轴,BC边上的高所在的直线为y轴,建立平面直角坐标系(如图2).在边BC上找一点D使BD=CE,求出点D的坐标,并通过计算验证BD2+CE2=DE2
(3)在旋转过程中,(2)中的等量关系BD2+CE2=DE2是否始终成立?若成立请证明你的结论;若不成立,请说明理由.
精英家教网

查看答案和解析>>

科目:czsx 来源: 题型:

(2011•道外区二模)点A(6,4)和点B(2,1)在平面直角坐标系中的位置如图所示.
(1)将点A、B分别向左平移5个单位,得到点A1、B1,请画出四边形AA1B1B;
(2)画一条直线,将四边形AA1B1B分成两个全等的图形,并且每个图形都是轴对称图形.

查看答案和解析>>

科目:czsx 来源: 题型:

如图,在平面直角坐标系中,点A的坐标为(0,1),点B的坐标为(3,1),C的坐标为
(4,3),如果存在点D,要使△ABD与△ABC全等,那么点D的坐标是
(4,-1)或(-1,3)或(-1,-1)
(4,-1)或(-1,3)或(-1,-1)

查看答案和解析>>

科目:czsx 来源: 题型:

在平面直角坐标系内,直线y=
3
4
x+3与两坐标轴交于A、B两点,点O为坐标原点,若在该坐标平面内有以点P(不与点A、B、O重合)为顶点的直角三角形与Rt△ABO全等,且这个以点P为顶点的直角三角形与Rt△ABO有一条公共边,则所有符合条件的P点个数为(  )
A、9个B、7个C、5个D、3个

查看答案和解析>>

科目:czsx 来源: 题型:

如图,在平面直角坐标系中,点A的坐标为(2,0),以OA为边在第四象限内作等边△AOB,精英家教网点C为x轴的正半轴上一动点(OC>2),连接BC,以BC为边在第四象限内作等边△CBD,直线DA交y轴于点E.
(1)试问△OBC与△ABD全等吗?并证明你的结论;
(2)随着点C位置的变化,点E的位置是否会发生变化?若没有变化,求出点E的坐标;若有变化,请说明理由.

查看答案和解析>>

科目:czsx 来源: 题型:

如图,在平面直角坐标系中,O为坐标原点.△ABC的边BC在x轴上,A、C两点的坐标分别为A(0,m)、C(n,0),B(-5,0),且(n-3)2+
3m-12
=0
,点P从B出发,以每秒2个单位的速度沿射线BO匀速运动,设点P运动时间为t秒.
(1)求A、C两点的坐标;
(2)连接PA,用含t的代数式表示△POA的面积;
(3)当P在线段BO上运动时,在y轴上是否存在点Q,使△POQ与△AOC全等?若存在,请求出t的值并直接写出Q点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:czsx 来源: 题型:

已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的精英家教网坐标分别为A(-3,0),C(1,0),tan∠BAC=
34

(1)求点B的坐标和过点A,B的直线的函数表达式;
(2)在x轴上找一点D,连接BD,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;
(3)在(2)的条件下,如P,Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m使得△APQ与△ADB相似?如存在,请求出的m值;如不存在,请说明理由.

查看答案和解析>>

科目:czsx 来源: 题型:

三个全等的直角梯形①、②、③在平面直角坐标系中的位置如图所示,抛物线y=a精英家教网x2-bx-c经过梯形的顶点A、B、C、D,已知梯形的两条底边长分别为4,6.
(1)求梯形的两腰长;
(2)求抛物线的解析式.

查看答案和解析>>

科目:czsx 来源: 题型:

12、点A(-l,4)和点B(-5,1)在平面直角坐标系中的位置如图所示:将点A、B分别向右平移5个单位,得到点A1、B1,画出四边形AA1B1B;并画一条直线,将四边形AA1B1B分成两个全等的图形,并且每个图形都是轴对称图形.

查看答案和解析>>

科目:czsx 来源: 题型:

在平面直角坐标系XOY中,直线l1过点A(1,0)且与y轴平行,直线l2过点B(0,2)且与x轴平行,直线l1与直线l2相交于点P.点E为直线l2上一点,反比例函数y=
kx
(k>0)的图象过点E与直线l1相交于点F.
(1)若点E与点P重合,求k的值;
(2)连接OE、OF、EF.若k>2,且△OEF的面积为△PEF的面积的2倍,求E点的坐标;
(3)是否存在点E及y轴上的点M,使得以点M、E、F为顶点的三角形与△PEF全等?若存在,求E点坐标;若不存在,请说明理由.精英家教网

查看答案和解析>>

科目:czsx 来源: 题型:

如图1是由四块全等的含有30°角的直角三角板拼成的正方形,已知里面小正方形的边长为
3
-1
.如图2,取其中的三块直角三角板拼成等边三角形ABC,再以O为原点,AB所在直线为x轴建立平面直角坐标系.
(1)求等边△ABC的面积;
(2)求BC边所在直线的解析式;
(3)将第四块直角三角板与△CDE重合,然后绕点E按逆时针方向旋转60°后得△EC'D',问点C'是否落在直线BC上?请你作出判断,并说明理由.
精英家教网

查看答案和解析>>

科目:czsx 来源: 题型:

已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A(-3,0)精英家教网,C(1,0),tan∠BAC=
34

(1)求过点A,B的直线的函数表达式;
(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;
(3)在(2)的条件下,如P,Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m,使得△APQ与△ADB相似?如存在,请求出m的值;如不存在,请说明理由.

查看答案和解析>>

科目:czsx 来源: 题型:

在平面直角坐标系中,点A(2,0),B(0,4),作△BOC,使△BOC与△ABO全等,则点C坐标为
(-2,0)或(2,4)或(-2,4)
(-2,0)或(2,4)或(-2,4)

查看答案和解析>>

科目:czsx 来源: 题型:

如图(1),在平面直角坐标系中,两个全等的直角三角形的直角顶点及一条直角边重合,点A在第二象限内,点B、点C在x轴负半轴上,∠AOC=60°,OA=4
精英家教网
(1)点C的坐标为
 

(2)如图(2),将△ACB绕点C按顺时针方向旋转30°,得到△A′CB′的位置,其中A′C交直线OA于E,则直线CE的解析式为
 

(3)设A′B′交直线OA、CA于点M、N,则四边形MNCE的面积为
 
平方单位.

查看答案和解析>>

科目:czsx 来源: 题型:

如图在平面直角坐标系中,∠OBA=90°,AB=3,OB=4,点A的坐标为(5,0)点B的横坐标
165

(1)求点B的纵坐标;
(2)求直线AB的解析式;
(3)若有一个直角三角形与△ABO全等,且它们有一条公共边,请写出这个直角三角形未知顶点的坐标(直接写出所有可能的结果)

查看答案和解析>>

科目:czsx 来源: 题型:

在平面直角坐标系中,矩形ABCD与等边△EFG按如图①所示放置:点B、G与坐标原点O重合,F、B、G、C在x轴上,E、A、D三点同在平行于x轴的直线上.△EFG沿x轴向右匀速移动,当点G移至与点C重合时,△EFG即停止移动.在△EFG移动过程中,与矩形ABCD的重合部分的面积S(cm2)与移动时间t(s)的一部分函数图象是线段MN如图②所示(即△EFG完全进入矩形ABCD内部时的一段函数图象)
(1)结合图②,求等边△EFG的边长和它移动的速度;
(2)求S与t的函数关系式,并在图②中补全△EFG在整个移动过程中,S与t的函数关系式的大致图象;
(3)当△EFG移动(
3
+1)s时,E点到达P点的位置,一开口向下的抛物线y=
1
a
x2+bx
,过P、O两点且与射线AD相交于点H,与x轴相交于点Q(异于原点).请问a是否存在取某一值或某一范围,使OQ+PH的值为定值?如果存在,求出a值或a的取值范围;如果不存在,请说明理由.

查看答案和解析>>

科目:czsx 来源: 题型:

(2013•石景山区一模)如图,把两个全等的Rt△AOB和Rt△ECD分别置于平面直角坐标系xOy中,使点E与点B重合,直角边OB、BC在y轴上.已知点D (4,2),过A、D两点的直线交y轴于点F.若△ECD沿DA方向以每秒
2
个单位长度的速度匀速平移,设平移的时间为t(秒),记△ECD在平移过程中某时刻为△E′C′D′,E′D′与AB交于点M,与y轴交于点N,C′D′与AB交于点Q,与y轴交于点P(注:平移过程中,点D′始终在线段DA上,且不与点A重合).
(1)求直线AD的函数解析式;
(2)试探究在△ECD平移过程中,四边形MNPQ的面积是否存在最大值?若存在,求出这个最大值及t的取值;若不存在,请说明理由;
(3)以MN为边,在E′D′的下方作正方形MNRH,求正方形MNRH与坐标轴有两个公共点时t的取值范围.

查看答案和解析>>

科目:czsx 来源: 题型:

(2013•贵港)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c交y轴于点C(0,4),对称轴x=2与x轴交于点D,顶点为M,且DM=OC+OD.
(1)求该抛物线的解析式;
(2)设点P(x,y)是第一象限内该抛物线上的一个动点,△PCD的面积为S,求S关于x的函数关系式,并写出自变量x的取值范围;
(3)在(2)的条件下,若经过点P的直线PE与y轴交于点E,是否存在以O、P、E为顶点的三角形与△OPD全等?若存在,请求出直线PE的解析式;若不存在,请说明理由.

查看答案和解析>>