精英家教网 > 试题搜索列表 >学习了勾股定理后

学习了勾股定理后答案解析

科目:czsx 来源: 题型:

我们学习了勾股定理后,都知道“勾三、股四、弦五”.
(1)观察:3,4,5;5,12,13;7,24,25;…,发现这些勾股数的勾都是奇数,且从3起就没有间断过.事实上,勾是三时,股和弦的算式分别是
1
2
(9-1),
1
2
(9+1)
;勾是五时,股和弦的算式分别是
1
2
(25-1),
1
2
(25+1)
.根据你发现的规律,分别写出勾是七时,股和弦的算式;
(2)根据(1)的规律,请用含n(n为奇数,且n≥3)的代数式来表示所有这些勾股数的勾、股、弦,合情猜想它们之间的相等关系(请写出两种),并对其中一种猜想加以证明;
(3)继续观察4,3,5;6,8,10;8,15,17;…,可以发现各组的第一个数都是偶数,且从4起也没有间断过.运用类似上述探索的方法,直接用m(m为偶数,且m>4)的代数式来表示股和弦.

查看答案和解析>>

科目:czsx 来源:2009年安徽省合肥市寿春中学一模试卷(解析版) 题型:解答题

(2012•包河区一模)我们学习了勾股定理后,都知道“勾三、股四、弦五”.
(1)观察:3,4,5;5,12,13;7,24,25;…,发现这些勾股数的勾都是奇数,且从3起就没有间断过.事实上,勾是三时,股和弦的算式分别是;勾是五时,股和弦的算式分别是.根据你发现的规律,分别写出勾是七时,股和弦的算式;
(2)根据(1)的规律,请用含n(n为奇数,且n≥3)的代数式来表示所有这些勾股数的勾、股、弦,合情猜想它们之间的相等关系(请写出两种),并对其中一种猜想加以证明;
(3)继续观察4,3,5;6,8,10;8,15,17;…,可以发现各组的第一个数都是偶数,且从4起也没有间断过.运用类似上述探索的方法,直接用m(m为偶数,且m>4)的代数式来表示股和弦.

查看答案和解析>>

科目:czsx 来源: 题型:解答题

我们学习了勾股定理后,都知道“勾三、股四、弦五”.
(1)观察:3,4,5;5,12,13;7,24,25;…,发现这些勾股数的勾都是奇数,且从3起就没有间断过.事实上,勾是三时,股和弦的算式分别是数学公式;勾是五时,股和弦的算式分别是数学公式.根据你发现的规律,分别写出勾是七时,股和弦的算式;
(2)根据(1)的规律,请用含n(n为奇数,且n≥3)的代数式来表示所有这些勾股数的勾、股、弦,合情猜想它们之间的相等关系(请写出两种),并对其中一种猜想加以证明;
(3)继续观察4,3,5;6,8,10;8,15,17;…,可以发现各组的第一个数都是偶数,且从4起也没有间断过.运用类似上述探索的方法,直接用m(m为偶数,且m>4)的代数式来表示股和弦.

查看答案和解析>>

科目:czsx 来源:2012年安徽省合肥市包河区中考数学一模试卷(解析版) 题型:解答题

我们学习了勾股定理后,都知道“勾三、股四、弦五”.
(1)观察:3,4,5;5,12,13;7,24,25;…,发现这些勾股数的勾都是奇数,且从3起就没有间断过.事实上,勾是三时,股和弦的算式分别是;勾是五时,股和弦的算式分别是.根据你发现的规律,分别写出勾是七时,股和弦的算式;
(2)根据(1)的规律,请用含n(n为奇数,且n≥3)的代数式来表示所有这些勾股数的勾、股、弦,合情猜想它们之间的相等关系(请写出两种),并对其中一种猜想加以证明;
(3)继续观察4,3,5;6,8,10;8,15,17;…,可以发现各组的第一个数都是偶数,且从4起也没有间断过.运用类似上述探索的方法,直接用m(m为偶数,且m>4)的代数式来表示股和弦.

查看答案和解析>>

科目:czsx 来源: 题型:

同学们,学习了无理数之后,我们已经把数的领域扩大到了实数的范围,这说明我们的知识越来越丰富了!可是,无理数究竟是一个什么样的数呢?下面让我们在几个具体的图形中认识一下无理数.
(1)如图①△ABC是一个边长为2的等腰直角三角形.它的面积是2,把它沿着斜边的高线剪开拼成如图②的正方形ABCD,则这个正方形的面积也就等于正方形的面积即为2,则这个正方形的边长就是
2
,它是一个无理数.

(2)如图,直径为1个单位长度的圆从原点O沿数轴向右滚动一周,圆上的一点P(滚动时与点O重合)由原点到达点O′,则OO′的长度就等于圆的周长π,所以数轴上点O′代表的实数就是
π
π
,它是一个无理数.

(3)如图,在Rt△ABC中,∠C=90°,AC=2,BC=1,根据勾股定理可求得AB=
5
5
,它是一个无理数.

好了,相信大家对无理数是不是有了更具体的认识了,那么你是也试着在图形中作出两个无理数吧:
1、你能在6×8的网格图中(每个小正方形边长均为1),画出一条长为
10
的线段吗?

2、学习了实数后,我们知道数轴上的点与实数是一一对应的关系.那么你能在数轴上找到表示 -
5
的点吗?

查看答案和解析>>

科目:czsx 来源:学习周报 数学 华师大八年级版 2009-2010学年 第8期 总第164期 华师大版 题型:044

下面是数学课堂上的一个学习片段,阅读后,请回答下面的问题

学习了勾股定理的有关内容后,张老师请同学们交流讨论这样一个问题:“已知Rt△ABC的两边长分别为3和4,请你求出第三边长的平方.”

同学们经片刻的思考与交流后,李明同学举手说:“第三边长的平方是25”;王华同学说:“第三边长的平方是7”.还有一些同学也提出了不同的看法

(1)假如你也在课堂上,你的意见如何?为什么?

(2)通过上面数学问题的讨论,你有什么感受?(用一句话表示)

查看答案和解析>>

科目:czsx 来源:期末题 题型:解答题

同学们,学习了无理数之后,我们已经把数的领域扩大到了实数的范围,这说明我们的知识越来越丰富了!可是,无理数究竟是一个什么样的数呢?下面让我们在几个具体的图形中认识一下无理数.
(1) 如图①△ABC 是一个边长为2 的等腰直角三角形,它的面积是2 ,把它沿着斜边的高线剪开拼成如图②的正方形ABCD ,则这个正方形的面积也就等于三角形的面积即为2 ,则这个正方形的边长就是,它是一个无理数.
(2)如图,直径为1个单位长度的圆从原点O沿数轴向右滚动一周,圆上的一点P(滚动时与点O重合)由原点到达点O',则OO'的长度就等于圆的周长π,所以数轴上点O'代表的实数就是         ,它是一个无理数.
(3) 如图,在Rt△ABC中,∠C=90°,AC=2,BC=1,根据勾股定理可求得AB=           ,它是一个无理数.
 好了,相信大家对无理数是不是有了更具体的认识了,那么你也试着在图形中作出两个无理数吧:
1、你能在6×8的网格图中(每个小正方形边长均为1),画出一条长为的线段吗?
2、学习了实数后,我们知道数轴上的点与实数是一一对应的关系,那么你能在数轴上找到表示﹣的点吗?

查看答案和解析>>

科目:czsx 来源: 题型:解答题

同学们,学习了无理数之后,我们已经把数的领域扩大到了实数的范围,这说明我们的知识越来越丰富了!可是,无理数究竟是一个什么样的数呢?下面让我们在几个具体的图形中认识一下无理数.
(1)如图①△ABC是一个边长为2的等腰直角三角形.它的面积是2,把它沿着斜边的高线剪开拼成如图②的正方形ABCD,则这个正方形的面积也就等于正方形的面积即为2,则这个正方形的边长就是数学公式,它是一个无理数.

(2)如图,直径为1个单位长度的圆从原点O沿数轴向右滚动一周,圆上的一点P(滚动时与点O重合)由原点到达点O′,则OO′的长度就等于圆的周长π,所以数轴上点O′代表的实数就是______,它是一个无理数.

(3)如图,在Rt△ABC中,∠C=90°,AC=2,BC=1,根据勾股定理可求得AB=______,它是一个无理数.

好了,相信大家对无理数是不是有了更具体的认识了,那么你是也试着在图形中作出两个无理数吧:
1、你能在6×8的网格图中(每个小正方形边长均为1),画出一条长为数学公式的线段吗?

2、学习了实数后,我们知道数轴上的点与实数是一一对应的关系.那么你能在数轴上找到表示 数学公式的点吗?

查看答案和解析>>

科目:czsx 来源: 题型:

20、学习了勾股定理以后,有同学提出“在直角三角形中,三边满足a2+b2=c2,或许其他的三角形三边也有这样的关系”.让我们来做一个实验!
(1)画出任意一个锐角三角形,量出各边的长度(精确到1毫米),较短的两条边长分别是a=
6
mm;b=
8
mm;较长的一条边长c=
9
mm.比较=a2+b2
c2(填写“>”,“<”,或“=”);
(2)画出任意的一个钝角三角形,量出各边的长度(精确到1毫米),较短的两条边长分别是a=
6
mm;b=
8
mm;较长的一条边长c=
11
mm.比较a2+b2
c2(填写“>”,“<”,或“=”);
(3)根据以上的操作和结果,对这位同学提出的问题,你猜想的结论是:
若△ABC是锐角三角形,则有a2+b2>c2
若△ABC是钝角三角形,∠C为钝角,则有a2+b2<c2
,类比勾股定理的验证方法,相信你能说明其能否成立的理由.

查看答案和解析>>

科目:czsx 来源: 题型:

某同学学习了编程后,写了一个关于实数运算的程序,当输入一个数值后,屏幕输出的结果总比该数的平方大1.若该同学按此程序输入
7
后,把屏幕输出的结果再次输入,则最后屏幕输出的结果为
 

查看答案和解析>>

科目:czsx 来源: 题型:

八年级三班小明和小亮同学学习了“勾股定理”之后,为了测得下图风筝CE的高度,他们进行了如精英家教网下操作:
(1)测得BD的长度为16米.
(2)根据手中剩余线的长度计算出风筝线BC的长为63米.
(3)牵线放风筝的小明身高1.6米.
求风筝的高度CE.

查看答案和解析>>

科目:czsx 来源: 题型:阅读理解

阅读材料:
学习了无理数后,某数学兴趣小组开展了一次探究活动:估算
13
的近似值.
小明的方法:
9
13
16

13
=3+k(0<k<1).
(
13
)2=(3+k)2

∴13=9+6k+k2
∴13≈9+6k.
解得 k≈
4
6

13
≈3+
4
6
≈3.67.
问题:
(1)请你依照小明的方法,估算
41
的近似值;
(2)请结合上述具体实例,概括出估算
m
的公式:已知非负整数a、b、m,若a<
m
<a+1,且m=a2+b,则
m
a+
b
2a
a+
b
2a
(用含a、b的代数式表示);
(3)请用(2)中的结论估算
37
的近似值.

查看答案和解析>>

科目:czsx 来源: 题型:

22、小明学了勾股定理后很高兴,兴冲冲的回家告诉了爸爸:在△ABC中,若∠C=90°,BC=a,AC=b,AB=c,如下图,根据勾股定理,则a2+b2=c2.爸爸笑眯眯地听完后说:很好,你又掌握了一样知识,现在考考你,若不是直角三角形,那勾股定理还成不成立?若成立,请说明理由;若不成立,请你类比勾股定理,试猜想a2+b2与c2的关系,并证明你的结论.〔下图备用)

查看答案和解析>>

科目:czsx 来源: 题型:

某同学学习了编程后,写了一个关于实数运算的程序:当输入一个数值后,屏幕输出的结果总比该数的平方小1.若某同学输入
7
后,把屏幕输出结果再次输入,则最后的屏幕输出结果是(  )
A、6B、8C、35D、37

查看答案和解析>>

科目:czsx 来源: 题型:

小明同学学习了对称后,忽然想起了过去做过一道题:有一组数排列成方阵,如图,试计算这组数的和.小明想方阵就像正方形,正方形是轴对称图形,能不能用轴对称的思想来解决方阵的计算问题呢?小明试了试,竟得到非常巧妙的方法,你也能试试看吗?

查看答案和解析>>

科目:czsx 来源: 题型:

学习了绝对值后同学们理解了|3|=|3-0|,它在数轴上的意义是表示3的点与原点(即表示0的点)之间的距离.又如式子|4-2|,它在数轴上的意义是表示4的点与表示2的点之间的距离.类似地,式子|x+7|在数轴上的意义是
表示x的点与表示-7的点之间的距离
表示x的点与表示-7的点之间的距离

查看答案和解析>>

科目:czsx 来源: 题型:

学习了勾股定理的逆定理,我们知道:在一个三角形中,如果两边的平方和等于第三边的平方,那么这个三角形为直角三角形.类似地,我们定义:对于任意的三角形,设其三个角的度数分别为x°、y°和z°,若满足x2+y2=z2,则称这个三角形为勾股三角形.
(1)根据“勾股三角形”的定义,请你直接判断命题:“直角三角形是勾股三角形”是真命题还是假命题?
(2)已知某一勾股三角形的三个内角的度数从小到大依次为x°、y°和z°,且xy=2160,求x+y的值;
(3)如图,△ABC内接于⊙O,AB=
6
,AC=1+
3
,BC=2,⊙O的直径BE交AC于点D.
①求证:△ABC是勾股三角形;
②求DE的长.

查看答案和解析>>