精英家教网 > 试题搜索列表 >如图所示.OE,OF分别是AB,AC边的中垂线

如图所示.OE,OF分别是AB,AC边的中垂线答案解析

科目:czsx 来源:101网校同步练习 初二数学 人教版(新课标2004年初审) 人教版(新课标2004年初审) 题型:013

如图所示,在△ABC中,∠C=90°,点O为△ABC的三条角平分线的交点,OD⊥BC,OE⊥AC,OF⊥AB,点D、E、F分别是垂足,且AB=10,BC=8,CA=6,则点O到三边AB、AC、BC的距离分别是

[  ]

A.2,2,2

B.3,3,3

C.4,3,2

D.2,3,5

查看答案和解析>>

科目:czsx 来源: 题型:

下面是小明作业中对一道题的解答以及老师的批阅
如图所示,▱ABCD中,对角线AC,BD相交于O,OE⊥AD,OF⊥BC,垂足分别是E,F.
求证:OE=OF.
解:∵四边形ABCD是平行四边形,
∴AB∥CD,OA=OC.
∴∠3=∠4.(两直线平行,内错角相等)
∴∠1=∠2(对顶角相等)
∴△AOE≌△COF,
∴OE=OF.
小明认为自己正确说明了问题,但老师却在答案中划了一条线,并打了?.请你指出其中的问题,并给出正确解答.

查看答案和解析>>

科目:czsx 来源: 题型:解答题

下面是小明作业中对一道题的解答以及老师的批阅
如图所示,▱ABCD中,对角线AC,BD相交于O,OE⊥AD,OF⊥BC,垂足分别是E,F.
求证:OE=OF.
解:∵四边形ABCD是平行四边形,
∴AB∥CD,OA=OC.
∴∠3=∠4.(两直线平行,内错角相等)
∴∠1=∠2(对顶角相等)
∴△AOE≌△COF,
∴OE=OF.
小明认为自己正确说明了问题,但老师却在答案中划了一条线,并打了?.请你指出其中的问题,并给出正确解答.

查看答案和解析>>

科目:czsx 来源: 题型:解答题

园林工人打算在人民公园里设计一个菱形的花坛,要求使菱形两条对角线的长分别为12m和16m,小明设计了下列方案,如图所示.
(1)小明首先在地上确定两个点A、C,使AC=16m;
(2)再确定AC的中点O,然后过O点作EF⊥AC,垂足为O点,分别在OE、OF上截取OD=,OB=6m;
(3)分别连接AB、BC、CD、DA,则四边形ABCD就是要确定的菱形花坛,你能说明其中的道理吗?

查看答案和解析>>

科目:czsx 来源:不详 题型:解答题

园林工人打算在人民公园里设计一个菱形的花坛,要求使菱形两条对角线的长分别为
精英家教网
12m和16m,小明设计了下列方案,如图所示.
(1)小明首先在地上确定两个点A、C,使AC=16m;
(2)再确定AC的中点O,然后过O点作EF⊥AC,垂足为O点,分别在OE、OF上截取OD=,OB=6m;
(3)分别连接AB、BC、CD、DA,则四边形ABCD就是要确定的菱形花坛,你能说明其中的道理吗?

查看答案和解析>>

科目:czsx 来源:同步题 题型:解答题

园林工人打算在人民公园里设计一个菱形的花坛,要求使菱形两条对角线的长分别为12m和16m,小明设计了下列方案,如图所示.
(1)小明首先在地上确定两个点A、C,使AC=16m;
(2)再确定AC的中点O,然后过O点作EF⊥AC,垂足为O点,分别在OE、OF上截取
OD=6m,OB=6m;
(3)分别连接AB、BC、CD、DA,则四边形ABCD就是要确定的菱形花坛,你能说明其中的道理吗?

查看答案和解析>>

科目:czsx 来源: 题型:

51、园林工人打算在人民公园里设计一个菱形的花坛,要求使菱形两条对角线的长分别为12m和16m,小明设计了下列方案,如图所示.
(1)小明首先在地上确定两个点A、C,使AC=16m;
(2)再确定AC的中点O,然后过O点作EF⊥AC,垂足为O点,分别在OE、OF上截取OD=6m,OB=6m;
(3)分别连接AB、BC、CD、DA,则四边形ABCD就是要确定的菱形花坛,你能说明其中的道理吗?

查看答案和解析>>