精英家教网 > 试题搜索列表 >如图,点E在AB上,点D在AC上,且∠B=∠C

如图,点E在AB上,点D在AC上,且∠B=∠C答案解析

科目:czsx 来源:非常讲解·教材全解全析 数学 九年级下 (配北师大课标) 配北师大课标 题型:047

如图,⊙O的弦AB、CD的延长线交于P,且PA=PC.O到弦AB,CD的距离相等。

求证:PB=PD.

查看答案和解析>>

科目:czsx 来源: 题型:

精英家教网甲、乙二人在如图所示的斜坡AB上作往返跑训练.已知:甲上山的速度是a米/分,下山的速度是b米/分(a<b);乙上山的速度是
1
2
a米/分,下山的速度是2b米/分.如果甲、乙二人同时从点A出发,时间为t(分),离开点A的路程为S(米).那么下面图象中,大致表示甲、乙二人从点A出发后的时间t(分)与离开点A的路程S(米)之间的函数关系的是(  )
A、精英家教网
B、精英家教网
C、精英家教网
D、精英家教网

查看答案和解析>>

科目:czsx 来源: 题型:

(2013•明溪县质检)如图,C是线段AB上一动点,分别以AC、BC为边作等边△ACD.等边△BCE,连接AE、BD分别交CD、CE于M、N两.
(1)求证:AE=BD;
(2)判断直线MN与AB的位置关系;
(3)若AB=10,当点C在AB上运动时,是否存在一个位置使MN的长最大?若存在请求出此时AC的长以及MN的长.若不存在请说明理由.

查看答案和解析>>

科目:czsx 来源: 题型:

精英家教网如图,D是射线AB上一点,过点D作DE∥AC,交∠BAC平分线于E,过点D作DF⊥AE,垂足为F.
(1)按要求在右图上将图形补全;
(2)已知∠BAC=60°,AD=2,求线段EF的长.

查看答案和解析>>

科目:czsx 来源: 题型:

如图,△ABC中,AB=20,BC=21,AC=13,如果动点D以每秒2个单位长的速度从点B出发沿射线BA方向运动,当运动到12秒时停止,直线DE∥BC,E为直线DE与直线CA的交点,若点D运动时间设为t秒.
(1)求当点D在线段AB上时线段DE的长度(用含t的代表式表示);
(2)求出△DEC的面积S与时间t的函数关系式;
(3)S是否有最大值?若有,请求出最大值和相应t的值;若没有,请说明理由.

查看答案和解析>>

科目:czsx 来源: 题型:

如图,O是直线AB上任意一点,OC平分∠AOB.按下列要求画图并回答问题:
(1)分别在射线OA、OC上截取线段OD、OE,且OE=2OD;
(2)连接DE;
(3)以O为顶点,画∠DOF=∠EDO,射线OF交DE于点F;
(4)写出图中∠EOF的所有余角:
∠DOF,∠EDO
∠DOF,∠EDO

查看答案和解析>>

科目:czsx 来源: 题型:

10、如图,C为⊙O直径AB上一动点,过点C的直线交⊙O于D,E两点,且∠ACD=45°,DF⊥AB于点F,EG⊥AB于点G,当点C在AB上运动时,设AF=x,DE=y,下列中图象中,能表示y与x的函数关系式的图象大致是(  )

查看答案和解析>>

科目:czsx 来源: 题型:

已知:如图,△ABC中,AB=3,∠BAC=120°,AC=1,D为AB延长线上一点,BD=1,点P在∠BAC的平分精英家教网线上,且满足△PAD是等边三角形.
(1)求证:BC=BP;
(2)求点C到BP的距离.

查看答案和解析>>

科目:czsx 来源: 题型:

如图,△ABC中,AB=2,BC=2
3
,AC=4,E,F分别在AB,AC上,沿EF对折,使精英家教网点A落在BC上的点D处,且FD⊥BC.
(1)求AD的长;
(2)判断四边形AEDF的形状,并证明你的结论.

查看答案和解析>>

科目:czsx 来源: 题型:

(2011•裕华区二模)如图①,将两个等腰直角三角形叠放在一起,使上面三角板的一个锐角顶点与下面三角板的直角顶点重合,并将上面的三角板绕着这个顶点逆时针旋转,在旋转过程中,当下面三角板的斜边被分成三条线段时,我们来研究这三条线段之间的关系.
(1)实验与操作:
如图②,如果上面三角板的一条直角边旋转到CM的位置时,它的斜边恰好旋转到CN的位置,请在网格中分别画出以AM、MN和NB为边长的正方形,观察这三个正方形的面积之间的关系;
(2)猜想与探究:
如图③,在Rt△ABC中,BC=AC,∠ACB=90°,M、N是AB边上的点,∠MCN=45°,作DA⊥AB于点A,截取DA=NB,并连接DC、DM.
我们来证明线段CD与线段CN相等.
∵∠CAB=∠CBA=45°,又DA⊥AB于点A,
∴∠DAC=45°,∴∠DAC=∠CBA,
又∵DA=NB,BC=AC,
∴△CAD≌△CBN.
∴CD=CN.

请你继续解答:
①线段MD与线段MN相等吗?为什么?
②线段AM、MN、NB有怎样的数量关系,为什么?
(3)拓广与运用:
如图④,已知线段AB上任意一点M(AM<MB),是否总能在线段MB上找到一点N,使得分别以AM与BN为边长的正方形的面积的和等于以MN为边长的正方形的面积?若能,请在图④中画出点N的位置,并简要说明作法;若不能,请说明理由.

查看答案和解析>>

科目:czsx 来源: 题型:阅读理解

阅读材料解答问题:如图,在菱形ABCD中,AB=AC,过点C作一条直线,分别交AB,AD的延长线于M,N,则
1
AM
+
1
AN
=
1
AC

(1)试证明:
1
AM
+
1
AN
=
1
AC

精英家教网
(2)如图,0为直线AB上一点,0C,OD将平角AOB三等分,点P1,P2,P3分别在射线OA,OD,OB上,0P1=r1,0P2=r2,OP3=r3,r与r′分别满足
1
r
=
1
r1
+
1
r2
1
r
=
1
r1
+
1
r2
+
1
r3
,用直尺在图中分别作出长度r,r′的线段.
精英家教网

查看答案和解析>>

科目:czsx 来源: 题型:

如图,已知直线AB交两坐标于A、B两点,且OA=OB=1,点P(a、b)是双曲线y=
1
2x
上在精英家教网第一象内的点过点P作PM⊥x轴于M、PN⊥y轴于N.两垂线与直线AB交于E、F.
(1)分别写出点E、F的坐标(分别用a或b表示);
(2)求△OEF的面积(结果用a、b表示);
(3)△AOF与△BOE是否相似?请说明理由;
(4)当P在双曲线y=
1
2x
上移动时,△OEF随之变动,观察变化过程,△OEF三内角中有无大小始终保持不变的内角?若有,请指出它的大小,并说明理由.

查看答案和解析>>

科目:czsx 来源: 题型:

精英家教网如图,△ABC中,AB=4,BC=6cm,AC=8cm,∠B与∠C的角平分线交于点P,EF经过点P,且EF∥BC,点E在AB上,点F在AC上,则EF=
 
cm.

查看答案和解析>>

科目:czsx 来源: 题型:

如图,D是射线AB上一点,过点D作DE∥AC,交∠BAC平分线于点E,过点D作DF⊥AE,垂足为F,DF交A精英家教网C于点G.
(1)按要求在所给图中将图形补全,然后判断四边形ADEG的形状,并证明你的结论;
(2)标出有向线段
AD
AF
AG
,记向量
AD
=
a
AF
=
b
,试用
a
b
表示向量
AG

查看答案和解析>>

科目:czsx 来源: 题型:

(2012•顺义区二模)已知:如图,D为线段AB上一点(不与点A、B重合),CD⊥AB,且CD=AB,AE⊥AB,BF⊥AB,且AE=BD,BF=AD.
(1)如图1,当点D恰是AB的中点时,请你猜想并证明∠ACE与∠BCF的数量关系;
(2)如图2,当点D不是AB的中点时,你在(1)中所得的结论是否发生变化,写出你的猜想并证明;
(3)若∠ACB=α,直接写出∠ECF的度数(用含α的式子表示).

查看答案和解析>>

科目:czsx 来源: 题型:

精英家教网如图,O是直线AB上的点,OD是∠AOC的平分线,OE是∠COB的平分线,求∠DOE的度数.
(1)一变:如图,∠DOE=90°,OD平分∠AOC,问OE是否平分∠BOC?
(2)二变:如图,点O在直线AB上,且∠AOC≠∠BOC,OD平分∠AOC,∠DOE=90°,下面四个结论,错误的有(  )
①图中必有3个钝角;②图中只有3对既相邻又互补的角;③图中没有45°的角;④OE是∠BOC的平分线.
A.0个;B.1个;C.2个;D.3个.

查看答案和解析>>

科目:czsx 来源: 题型:

已知:如图,在梯形ABCD中,AD∥BC,BC=3AD.
(1)如图①,连接AC,如果三角形ADC的面积为6,求梯形ABCD的面积;
(2)如图②,E是腰AB上一点,连接CE,设△BCE和四边形AECD的面积分别为S1和S2,且2S1=3S2,求
AEBE
的值;
(3)如图③,AB=CD,如果CE⊥AB于点E,且BE=3AE,求∠B的度数.
精英家教网

查看答案和解析>>

科目:czsx 来源: 题型:

如图,M是线段AB上一点,且AB=10cm,C,D两点分别从M,B同时出发时1cm/s,3cm/s的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上).
(1)当点C,D运动了2s,求这时AC+MD的值.
(2)若点C,D运动时,总有MD=3AC,求AM的长.

查看答案和解析>>

科目:czsx 来源: 题型:

23、如图,C是线段AB上一点,分别以AC、BC为边在线段AB同侧作正方形ACDE和BCFG,连接AF、BD.
(1)AF与BD是否相等,为什么?
(2)如果点C在线段AB的延长线上,(1)中的结论是否成立?请作图,并说明理由.

查看答案和解析>>

科目:czsx 来源: 题型:

如图,△ABC中,AB=3,BC=4,AC=5,E,F分别在AB,AC上,沿EF对折,使点A落在BC上的点D处,且FD⊥BC.
(1)判断四边形AEDF的形状,并证明你的结论.
(2)求AD的长.

查看答案和解析>>