下列命题中.正确的命题是 (A)若一条地线和两条平行直线中的一条直线相交.则它必与另一条相交 (B)一条直线和两平行直线中的一条直线可以确定一个平面.则它必与另一条直线也能确定一个平面 (C)一条直线和两条平行直线中的任何一条都没有公共点.那么这三条直线平行 (D)一条直线和两条平行直线中的一条直线是异面直线.当它与另一条直线没有公共点时.必与另一条直线也是异面直线翰林汇 查看更多

 

题目列表(包括答案和解析)

给出下列命题:
①已知椭圆两焦点F1,F2,则椭圆上存在六个不同点M,使得△F1MF2为直角三角形;
②已知直线l过抛物线y=2x2的焦点,且与这条抛物线交于A,B两点,则|AB|的最小值为2;
③若过双曲线的一个焦点作它的一条渐近线的垂线,垂足为M,O为坐标原点,则
④根据气象记录,知道荆门和襄阳两地一年中雨天所占的概率分别为20%和18%,两地同时下雨的概率为12%,则荆门为雨天时,襄阳也为雨天的概率是60%.其中正确命题的序号是
[     ]
A.①③④
B.①②③
C.③④
D.①②④

查看答案和解析>>

给出下列命题:

①已知椭圆两焦点,则椭圆上存在六个不同点,使得△为直角三角形;

②已知直线过抛物线的焦点,且与这条抛物线交于两点,则的最小值为2;

③若过双曲线的一个焦点作它的一条渐近线的垂线,垂足为为坐标原点,则

④根据气象记录,知道荆门和襄阳两地一年中雨天所占的概率分别为20%和18%,两地同时下雨的概率为12%,则荆门为雨天时,襄阳也为雨天的概率是60%.

其中正确命题的序号是(     )

A.①③④             B.①②③          C.③④            D.①②④

 

查看答案和解析>>

给出下列命题:
①已知椭圆两焦点,则椭圆上存在六个不同点,使得△为直角三角形;
②已知直线过抛物线的焦点,且与这条抛物线交于两点,则的最小值为2;
③若过双曲线的一个焦点作它的一条渐近线的垂线,垂足为为坐标原点,则
④根据气象记录,知道荆门和襄阳两地一年中雨天所占的概率分别为20%和18%,两地同时下雨的概率为12%,则荆门为雨天时,襄阳也为雨天的概率是60%.
其中正确命题的序号是(     )
A.①③④B.①②③C.③④D.①②④

查看答案和解析>>

给出下列命题:
①已知椭圆=1两焦点F1,F2,则椭圆上存在六个不同点M,使得△F1MF2为直角三角形;
②已知直线l过抛物线y=2x2的焦点,且与这条抛物线交于A,B两点,则|AB|的最小值为2;
③若过双曲线C:=1(a>0,b>0)的一个焦点作它的一条渐近线的垂线,垂足为M,O为坐标原点,则|OM|=a;
④根据气象记录,知道荆门和襄阳两地一年中雨天所占的概率分别为20%和18%,两地同时下雨的概率为12%,则荆门为雨天时,襄阳也为雨天的概率是60%.
其中正确命题的序号是( )
A.①③④
B.①②③
C.③④
D.①②④

查看答案和解析>>

给出下列命题:
①已知椭圆
x2
16
+
y2
8
=1两焦点F1,F2,则椭圆上存在六个不同点M,使得△F1MF2为直角三角形;
②已知直线l过抛物线y=2x2的焦点,且与这条抛物线交于A,B两点,则|AB|的最小值为2;
③若过双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的一个焦点作它的一条渐近线的垂线,垂足为M,O为坐标原点,则|OM|=a;
④根据气象记录,知道荆门和襄阳两地一年中雨天所占的概率分别为20%和18%,两地同时下雨的概率为12%,则荆门为雨天时,襄阳也为雨天的概率是60%.
其中正确命题的序号是(  )

查看答案和解析>>


同步练习册答案