3.以线段AB :x+y-2=0为直径的圆的方程为 A B C D 查看更多

 

题目列表(包括答案和解析)

以线段AB:x+y-2=0(0≤x≤2)为直径的圆的方程为…(    )

A.(x+1)2+(y+1)2=2                    B.(x-1)2+(y-1)2=2

C.(x+1)2+(y+1)2=8                    D.(x-1)2+(y-1)2=8

查看答案和解析>>

以线段AB:x+y-2=0(0≤x≤2)为直径的圆的方程为   

查看答案和解析>>

已知曲线C1
|x|
a
+
|y|
b
=1(a>b>0)
所围成的封闭图形的面积为4
5
,曲线C1的内切圆半径为
2
5
3
.记C2为以曲线C1与坐标轴的交点为顶点的椭圆.
(Ⅰ)求椭圆C2的标准方程;
(Ⅱ)设AB是过椭圆C2中心的任意弦,l是线段AB的垂直平分线.M是l上异于椭圆中心的点.
(1)若|MO|=λ|OA|(O为坐标原点),当点A在椭圆C2上运动时,求点M的轨迹方程;
(2)若M是l与椭圆C2的交点,求△AMB的面积的最小值.

查看答案和解析>>

已知曲线C1
|x|
a
+
|y|
b
=1(a>b>0)
所围成的封闭图形的面积为4
5
,曲线C1的内切圆半径为
2
5
3
.记C2为以曲线C1与坐标轴的交点为顶点的椭圆.
(Ⅰ)求椭圆C2的标准方程;
(Ⅱ)设AB是过椭圆C2中心的任意弦,l是线段AB的垂直平分线.M是l上异于椭圆中心的点.
(1)若|MO|=λ|OA|(O为坐标原点),当点A在椭圆C2上运动时,求点M的轨迹方程;
(2)若M是l与椭圆C2的交点,求△AMB的面积的最小值.

查看答案和解析>>


同步练习册答案
闂傚倸鍊搁崐鐑芥嚄閼哥數浠氬┑掳鍊楁慨瀵告崲濮椻偓閻涱喛绠涘☉娆愭闂佽法鍣﹂幏锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾捐鈹戦悩鍙夋悙缂佺媭鍨堕弻銊╂偆閸屾稑顏�