如图.在四棱锥P-ABCD中.底面ABCD为正方形.PD⊥平面ABCD.且PD = AB = a.E是PB的中点.F为AD中点. (1)求异面直线PD.AE所成的角, (2)求证:EF⊥平面PBC. (3)求二面角F-PC-E的大小. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)

如图,在四棱锥P-ABCD中,PA底面ABCD,DAB为直角,AB∥CD,AD=CD=2AB,E、F分别为PC、CD的中点.

(Ⅰ)试证:AB平面BEF;

(Ⅱ)设PA=k·AB,若平面与平面的夹角大于,求k的取值范围.

 

查看答案和解析>>

1.    (本小题满分12分)

如图,在四棱锥P—ABCD中,底面ABCD是矩形,已知AB = 3,AD = 2,PA = 2,

(1)    证明:AD⊥平面PAB

(2)    求异面直线PCAD所成的角的大小;

(3)    求二面角P—BD—A的大小.

 

查看答案和解析>>

1.    (本小题满分12分)

如图,在四棱锥P—ABCD中,底面ABCD是矩形,已知AB = 3,AD = 2,PA = 2,

(1)    证明:AD⊥平面PAB

(2)    求异面直线PCAD所成的角的大小;

(3)    求二面角P—BD—A的大小.

 

查看答案和解析>>

 (本小题满分12分)如图,在四棱锥PABCD中,PA底面ABCD,DAB为直角,ABCD,AD=CD=2AB,EF分别为PCCD的中点.

(Ⅰ)试证:AB平面BEF

(Ⅱ)设PAk ·AB,若平面与平面的夹角大于,求k的取值范围.

查看答案和解析>>

(本小题满分12分)如图,在四棱锥PABCD中,PA底面ABCD,DAB为直角,ABCD,AD=CD=2AB,E、F分别为PC、CD的中点.
(Ⅰ)试证:AB平面BEF
(Ⅱ)设PAk ·AB,若平面与平面的夹角大于,求k的取值范围.

查看答案和解析>>


同步练习册答案