题目列表(包括答案和解析)
(本小题满分13分) 已知过点(1,0)的直线相交于P、Q两点,PQ中点坐标为
(O为坐标原点)。 (I)求直线
的方程; (II)证明:
为定值。
(本小题满分13分)
若A、B是抛物线y2=4x上的不同两点,弦AB(不平行于y轴)的垂直平分线与
x轴相交于点P,则称弦AB是点P的一条“相关弦”.已知当x>2时,点P(x,0)
存在无穷多条“相关弦”.给定x0>2.
(I)证明:点P(x0,0)的所有“相关弦”的中点的横坐标相同;
(II) 试问:点P(x0,0)的“相关弦”的弦长中是否存在最大值?
若存在,求其最大值(用x0表示):若不存在,请说明理由.
(本小题满分12分)某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:每一组;第二组
,……,第五组
.右图是按上述分组方法得到的频率分布直方图.
(I)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数;
(II)设、
表示该班某两位同学的百米测试成绩,且已知
,求事件“
”的概率.
(本小题满分12分)某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:每一组;第二组
,……,第五组
.右图是按上述分组方法得到的频率分布直方图.
(I)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数;
(II)设、
表示该班某两位同学的百米测试成绩,且已知
,求事件“
”的概率.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com