21.(理)已知当时.不等式恒成立.求实数的取值范围. (文)已知二次函数的图象经过原点.其导函数为.一次函数.且不等式的解集为.求的解析式. 查看更多

 

题目列表(包括答案和解析)

(理)已知函数f(x)=(a-)x2+lnx(a∈R)

(1)当a=1时,存在xo∈[1,e]中,使不等式f(x0)≤m成立,求实数m的取值范围.

(2)若在区间(1,+∞)上,函数f(x)的图象恒在直线y=2ax的下方,求实数a的取值范围.

查看答案和解析>>

已知函数f(x)的定义域为R,对任意的x1,x2都满足f(x1+x2)=f(x1)+f(x2),当x<0时,f(x)<0.
(1)判断并证明f(x)的单调性和奇偶性
(2)是否存在这样的实数m,当θ∈[0,
π
2
]
时,使不等式f[sin2θ-(2+m)(sinθ+cosθ)-
4
sinθ+cosθ
]+f(3+2m)>0

对所有θ恒成立,如存在,求出m的取值范围;若不存在,说明理由.

查看答案和解析>>

已知点(1,
1
3
)是函数f(x)=ax(a>0且a≠1)的图象上一点,等比数列{an}的前n项和为f(n)-c,数列{bn}(bn>0)的首项为c,且前n项和Sn满足Sn-Sn-1=
Sn
+
Sn-1
(n≥2).记数列{
1
bnbn+1
}前n项和为Tn
(1)求数列{an}和{bn}的通项公式;
(2)若对任意正整数n,当m∈[-1,1]时,不等式t2-2mt+
1
2
>Tn恒成立,求实数t的取值范围
(3)是否存在正整数m,n,且1<m<n,使得T1,Tm,Tn成等比数列?若存在,求出m,n的值,若不存在,说明理由.

查看答案和解析>>

已知函数f(x)的定义域为R,对任意的x1,x2都满足.
(I)判断f(x)的单调性和奇偶性;
(II)是否存在这样的实数m,当θ∈[,
π
2
]
时,不等式f[sin2θ-(2+m)(sinθ+cosθ)-
4
sinθ+cosθ
]+f(3+2m)>0

对所有θ恒成立,如存在,求出m的取值范围;若不存在,说明理由.

查看答案和解析>>

已知函数f(x)=x2+ax+b(a,b∈R),g(x)=2x2-4x-16,且|f(x)|≤|g(x)|对x∈R恒成立.
(1)求a、b的值;
(2)若对x>2,不等式f(x)≥(m+2)x-m-15恒成立,求实数m的取值范围.
(3)记h(x)=-
1
2
f(x)-4,那么当k
1
2
时,是否存在区间[m,n](m<n),使得函数h(x)在区间[m,n]上的值域恰好为[km,kn]?若存在,请求出区间[m,n];若不存在,请说明理由.

查看答案和解析>>


同步练习册答案