题目列表(包括答案和解析)
(本小题满分14分)
如图:在四棱锥中,底面ABCD是菱形,,平面ABCD,点M,N分别为BC,PA的中点,且
(I)证明:平面AMN;
(II)求三棱锥N的体积;
(III)在线段PD上是否存在一点E,使得平面ACE;若存在,求出PE的长,若不存在,说明理由。
(本题满分14分)
如图,在四面体中,,点分别是的中点. 求证:
(1)直线平面;
(2)平面平面.
(本题满分14分)
如图,A是单位圆与轴正半轴的交点,点B、P在单位圆上,且,,,四边形OAQP的面积为S.
(Ⅰ)求;
(Ⅱ)求的最大值及此时的值0.
(本题满分14分)
如图所示,已知曲线与曲线交于点O、A,直线(0<t≤1)与曲线C1、C2分别相交于点D、B,连接OD、DA、AB。
(1)写出曲边四边形ABOD(阴影部分)的面积S与t的函数关系式;
(2)求函数在区间上的最大值。
(本题满分14分)如图,已知平面,∥,
是正三角形,且.
(1)设是线段的中点,求证:∥平面;
(2)求直线与平面所成角的余弦值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com