解(Ⅰ)由题意.. ∴. 2分 ∵ ∴为A的中点 3分 ∴. 即 椭圆方程为. 5分 (Ⅱ)当直线DE与轴垂直时.. 此时.四边形的面积为. 同理当MN与轴垂直时.也有四边形的面积为. 当直线DE.MN均与轴不垂直时.设.代入椭圆方程.消去得: . 设..则 所以.. 所以.. 同理.. 所以.四边形的面积==. 令.得 因为. 当时..且S是以为自变量的增函数. 所以 综上可知.即四边形DMEN面积的最大值为4.最小值为. 查看更多

 

题目列表(包括答案和解析)

(本小题满分13分)

已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点。

(1)求椭圆C的方程;

(2)是否存在平行于OA的直线,使得直线与椭圆C有公共点,且直线OA与的距离等于4?若存在,求出直线的方程;若不存在,请说明理由。

【命题意图】本小题主要考查直线、椭圆等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归与转化思想。

查看答案和解析>>

(本小题满分13分)

已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点。

(1)求椭圆C的方程;

(2)是否存在平行于OA的直线,使得直线与椭圆C有公共点,且直线OA与的距离等于4?若存在,求出直线的方程;若不存在,请说明理由。

【命题意图】本小题主要考查直线、椭圆等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归与转化思想。

查看答案和解析>>

在复平面内, 是原点,向量对应的复数是=2+i。

(Ⅰ)如果点A关于实轴的对称点为点B,求向量对应的复数

(Ⅱ)复数对应的点C,D。试判断A、B、C、D四点是否在同一个圆上?并证明你的结论。

【解析】第一问中利用复数的概念可知得到由题意得,A(2,1)  ∴B(2,-1)   ∴  =(0,-2) ∴=-2i  ∵ (2+i)(-2i)=2-4i,      ∴  =

第二问中,由题意得,=(2,1)  ∴

同理,所以A、B、C、D四点到原点O的距离相等,

∴A、B、C、D四点在以O为圆心,为半径的圆上

(Ⅰ)由题意得,A(2,1)  ∴B(2,-1)   ∴  =(0,-2) ∴=-2i     3分

     ∵ (2+i)(-2i)=2-4i,      ∴  =                 2分

(Ⅱ)A、B、C、D四点在同一个圆上。                              2分

证明:由题意得,=(2,1)  ∴

  同理,所以A、B、C、D四点到原点O的距离相等,

∴A、B、C、D四点在以O为圆心,为半径的圆上

 

查看答案和解析>>

出租车几何学是由十九世纪的赫尔曼-闵可夫斯基所创立的.在出租车几何学中,点还是形如(x,y)的有序实数对,直线还是满足ax+by+c=0的所有(x,y)组成的图形,角度大小的定义也和原来一样.直角坐标系内任意两点A(x1,y1),B(x2,y2)定义它们之间的一种“距离”:|AB|=|x1-x2|+|y1-y2|,请解决以下问题:
(1)求线段x+y=2(x≥0,y≥0)上一点M(x,y)的距离到原点O(0,0)的“距离”;
(2)定义:“圆”是所有到定点“距离”为定值的点组成的图形,求“圆周”上的所有点到点Q(a,b)的“距离”均为 r的“圆”方程;
(3)点A(1,3)、B(6,9),写出线段AB的垂直平分线的轨迹方程并画出大致图象.(说明所给图形小正方形的单位是1)

查看答案和解析>>

出租车几何学是由十九世纪的赫尔曼-闵可夫斯基所创立的.在出租车几何学中,点还是形如(x,y)的有序实数对,直线还是满足ax+by+c=0的所有(x,y)组成的图形,角度大小的定义也和原来一样.直角坐标系内任意两点A(x1,y1),B(x2,y2)定义它们之间的一种“距离”:|AB|=|x1-x2|+|y1-y2|,请解决以下问题:
(1)求线段x+y=2(x≥0,y≥0)上一点M(x,y)的距离到原点O(0,0)的“距离”;
(2)定义:“圆”是所有到定点“距离”为定值的点组成的图形,求“圆周”上的所有点到点Q(a,b)的“距离”均为 r的“圆”方程;
(3)点A(1,3)、B(6,9),写出线段AB的垂直平分线的轨迹方程并画出大致图象.(说明所给图形小正方形的单位是1)

查看答案和解析>>


同步练习册答案