题目列表(包括答案和解析)
(本小题满分13分)
已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点。
(1)求椭圆C的方程;
(2)是否存在平行于OA的直线,使得直线与椭圆C有公共点,且直线OA与的距离等于4?若存在,求出直线的方程;若不存在,请说明理由。
【命题意图】本小题主要考查直线、椭圆等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归与转化思想。
(本小题满分13分)
已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点。
(1)求椭圆C的方程;
(2)是否存在平行于OA的直线,使得直线与椭圆C有公共点,且直线OA与的距离等于4?若存在,求出直线的方程;若不存在,请说明理由。
【命题意图】本小题主要考查直线、椭圆等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归与转化思想。
在复平面内, 是原点,向量对应的复数是,=2+i。
(Ⅰ)如果点A关于实轴的对称点为点B,求向量对应的复数和;
(Ⅱ)复数,对应的点C,D。试判断A、B、C、D四点是否在同一个圆上?并证明你的结论。
【解析】第一问中利用复数的概念可知得到由题意得,A(2,1) ∴B(2,-1) ∴ =(0,-2) ∴=-2i ∵ (2+i)(-2i)=2-4i, ∴ =
第二问中,由题意得,=(2,1) ∴
同理,所以A、B、C、D四点到原点O的距离相等,
∴A、B、C、D四点在以O为圆心,为半径的圆上
(Ⅰ)由题意得,A(2,1) ∴B(2,-1) ∴ =(0,-2) ∴=-2i 3分
∵ (2+i)(-2i)=2-4i, ∴ = 2分
(Ⅱ)A、B、C、D四点在同一个圆上。 2分
证明:由题意得,=(2,1) ∴
同理,所以A、B、C、D四点到原点O的距离相等,
∴A、B、C、D四点在以O为圆心,为半径的圆上
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com