/真 14. 15. 0.99 16. 126, 24789 查看更多

 

题目列表(包括答案和解析)

下列命题中,真命题的个数有(  )
①函数y=2-x是单调递减函数;  
②x0是方程lnx+x=4的解,则x0∈(2,3);
?x∈R,x2-x+
1
4
≥0

④?a,b∈R,则“3a>3b”是“log3a>log3b”的充要条件.

查看答案和解析>>

下列命题中,真命题的个数有(  )
①函数y=2-x是单调递减函数;  
②x0是方程lnx+x=4的解,则x0∈(2,3);
?x∈R,x2-x+
1
4
≥0

④?a,b∈R,则“3a>3b”是“log3a>log3b”的充要条件.
A.1个B.2个C.3个D.4个

查看答案和解析>>

以下命题中:①从匀速传递的产品生产流水线上,质检员每20分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②函数f(x)=x
1
3
-(
1
4
)x
在区间(
1
4
1
3
)
上存在零点;③设0<x<
π
2
,则“sin2x<1”是“xsinx<1”的充分而不必要条件;④对分类变量X与Y,它们的随机变量K2的观测值k来说,k越小,“X与Y有关系”的把握程度越大;其中真命题的个数有(  )

查看答案和解析>>

若存在实常数k和b,使得函数F(x)和G(x)对其公共定义域上的任意实数x都满足:F(x)≥kx+b和G(x)≤kx+b恒成立,则称此直线y=kx+b为F(x)和G(x)的“隔离直线”.已知函数h(x)=x2,m(x)=2elnx(e为自然对数的底数),φ(x)=x-2,d(x)=-1.
有下列命题:
①f(x)=h(x)-m(x)在x∈(0,
e
)
递减;
②h(x)和d(x)存在唯一的“隔离直线”;
③h(x)和φ(x)存在“隔离直线”y=kx+b,且b的最大值为-
1
4

④函数h(x)和m(x)存在唯一的隔离直线y=2
e
x-e

其中真命题的个数(  )

查看答案和解析>>

已知n为正偶数,用数学归纳法证明1-
1
2
+
1
3
-
1
4
+…+
1
n+1
=2(
1
n+2
+
1
n+4
+…+
1
2n
)
时,若已假设n=k(k≥2)为偶数)时命题为真,则还需要用归纳假设再证n=(  )时等式成立.

查看答案和解析>>


同步练习册答案