题目列表(包括答案和解析)
已知Pn(an,bn)都在直线L:y=2x+2上,P1为直线L与x轴的交点,数列{an}成等差数列,公差为1(n∈N*)
(Ⅰ)求数列{an},{bn}的通项公式
(Ⅱ)若f(n)=问是否存在k∈N*,使得f(k+5)=2f(k)-2成立,若存在,求出k的值;若不存在,说明理由.
|
|
已知数列{an},a1=1,点P(an,an+1)(n∈N+)在直线x-y+1=0上.
(1)求数列{an}的通项公式;
(2)函数f(n)=…+
(n∈N+),且n≥2),求函数f(n)的最小值.
(3)设bn=,Sn表示数列{bn}的前n项和,试问:是否存在关于n的整式g(n),使得S1+S2+S3+……+Sn-1=(Sn-1)g(n)对于一切不小于2的自然数n恒成立?若存在,写出g(n)的解析式,并加以证明;若不存在,试说明理由.
已知二次函数y=f(x)对任意x∈R满足f(x-1)=f(-x),且图像经过点(-2,1)及坐标原点.
(1)求函数y=f(x)的解析式;
(2)设数列{an}前n项和Sn=f(n),求数列{an}的通项公式an;
(3)对(2)中an,设为数列{bn}前n项和,试问:是否存在关于n的整式g(n),使得T1+T2+…+Tn-1=(Tn-1)g(n)对于一切不小于2的自然数n恒成立?若存在,写出g(n)的解析式,并加以证明;若不存在,请说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com