19. 如图三棱锥P-ABC中.△ABC是正三角形. ∠PCA=90°.D为PA的中点.二面角闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌涢锝嗙缁炬儳顭烽弻鏇熺箾閻愵剚鐝旂紒鐐劤閻忔繈鍩為幋锔藉亹鐎规洖娴傞弳锟犳⒑閹肩偛鈧洟鎮ц箛娑樼疅闁归棿鐒﹂崑瀣煕椤愶絿绠橀柣鐔村姂濮婅櫣绱掑Ο铏圭懆闂佽绻戝畝鍛婁繆閻㈢ǹ绀嬫い鏍ㄦ皑椤斿﹪姊虹憴鍕剹闁搞劑浜跺顐c偅閸愨晝鍘介柟鍏肩暘閸ㄥ宕弻銉︾厵闁告垯鍊栫€氾拷查看更多

 

题目列表(包括答案和解析)

16. (本小题满分12分)

如图,在三棱锥P—ABC中,ABBCAB = BC = kPA,点E、D分别是AC、PC的中点,EP⊥底面ABC

(1)  求证:ED∥平面PAB

(2)  求直线AB与平面PAC所成的角;

(3)  当k取何值时,E在平面PBC内的射影恰好为△PBC的重心?

 

查看答案和解析>>

(本小题满分12分)

       如图,在四棱锥PABCD中,底面ABCD是矩形PA⊥平面ABCDAP=ABBP=BC=2,EF分别是PB,PC的中点.

       (Ⅰ)证明:EF∥平面PAD

       (Ⅱ)求三棱锥EABC的体积V.

      

查看答案和解析>>

(本小题满分12分)

       如图,在四棱锥PABCD中,底面ABCD是矩形PA⊥平面ABCDAP=ABBP=BC=2,EF分别是PB,PC的中点.

       (Ⅰ)证明:EF∥平面PAD

       (Ⅱ)求三棱锥EABC的体积V.

      

查看答案和解析>>

(本小题满分12分)

如图,在三棱锥P-ABC中,⊿PAB是等边三角形,D,E分别为AB,PC的中点.

(Ⅰ)在BC边上是否存在一点F,使得PB∥平面DEF.

(Ⅱ)若∠PAC=∠PBC=90º,证明:ABPC

查看答案和解析>>

(本小题满分12分)
如图,在三棱锥P—ABC中,ABBCAB =" BC" = kPA,点E、D分别是AC、PC的中点,EP⊥底面ABC

(1) 求证:ED∥平面PAB
(2) 求直线AB与平面PAC所成的角;
(3) 当k取何值时,E在平面PBC内的射影恰好为△PBC的重心?

查看答案和解析>>


同步练习册答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌ら崫銉︽毄濞寸姵鑹鹃埞鎴炲箠闁稿﹥顨嗛幈銊р偓闈涙啞瀹曞弶鎱ㄥ璇蹭壕闂佺粯渚楅崰娑氱不濞戞ǚ妲堟繛鍡樺姈椤忕喖姊绘担鑺ョ《闁革綇绠撻獮蹇涙晸閿燂拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐礃椤曆囧煘閹达附鍋愰柛娆忣槹閹瑧绱撴担鍝勵€岄柛銊ョ埣瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷