题目列表(包括答案和解析)
(本小题满分14分)
阅读下面一段文字:已知数列
的首项
,如果当
时,
,则易知通项
,前
项的和
. 将此命题中的“等号”改为“大于号”,我们得到:数列
的首项
,如果当
时,
,那么
,且
. 这种从“等”到“不等”的类比很有趣。由此还可以思考:要证
,可以先证
,而要证
,只需证
(
). 结合以上思想方法,完成下题:
已知函数
,数列
满足
,
,若数列
的前
项的和为
,求证:
.
本小题满分14分)
(Ⅰ)已知函数
,其中
为有理数,且
. 求
的最小值;
(Ⅱ)试用(Ⅰ)的结果证明如下命题:设
,
为正有理数. 若
,则
;
(Ⅲ)请将(Ⅱ)中的命题推广到一般形式,并用数学归纳法证明你所推广的命题.
注:当
为正有理数时,有求导公式
.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com