题目列表(包括答案和解析)
(本小题满分12分)一个容量为M的样本数据,其频率分布表如下.
(Ⅰ)表中a= ,b = ;
(Ⅱ)画出频率分布直方图;
(Ⅲ)用频率分布直方图,求出总体的众数及平均数的估计值.
频率分布表
分组 |
频数 |
频率 |
频率/组距 |
(10,20] |
2 |
0.10 |
0.010 |
(20,30] |
3 |
0.15 |
0.015 |
(30,40] |
4 |
0.20 |
0.020 |
(40,50] |
a |
b |
0.025 |
(50,60] |
4 |
0.20 |
0.020 |
(60, 70] |
2 |
0.10 |
0.010 |
频率分布直方图
(本小题满分13分)2012年3月2日,国家环保部发布了新修订的《环境空气质量标准》.其中规定:居民区中的PM2.5年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米. 某城市环保部门随机抽取了一居民区去年40天的PM2.5的24小时平均浓度的监测数据,数据统计如下:
组别 |
PM2.5(微克/立方米) |
频数(天) |
频 率 |
第一组 |
(0,15] |
4 |
0.1 |
第二组 |
(15,30] |
12 |
|
第三组 |
(30,45] |
8 |
0.2 |
第四组 |
(45,60] |
8 |
0.2 |
第五组 |
(60,75] |
0.1 |
|
第六组 |
(75,90) |
4 |
0.1 |
(Ⅰ)试确定的值,并写出该样本的众数和中位数(不必写出计算过程);
(Ⅱ)完成相应的频率分布直方图.
(Ⅲ)求出样本的平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?说明理由.
(本小题满分12分)
某班主任对全班50名学生进行了作业量多少的调查。数据如下表:
|
认为作业多 |
认为作业不多 |
合计 |
喜欢玩游戏 |
18 |
9 |
|
不喜欢玩游戏 |
8 |
15 |
|
合计 |
|
|
|
(Ⅰ) 请完善上表中的所缺的有关数据;
(Ⅱ) 试通过计算说明能有多大的把握认为喜欢玩游戏与作业量的多少有关系?
(本小题满分14分)
为了了解初三学生女生身高情况,某中学对初三女生身高进行了一次测量,所得数据整理后列出了频率分布表如下:
组 别 | 频数 | 频率 |
145.5~149.5 | 1 | 0.02 |
149.5~153.5 | 4 | 0.08 |
153.5~157.5 | 20 | 0.40 |
157.5~161.5 | 15 | 0.30 |
161.5~165.5 | 8 | 0.16 |
165.5~169.5 | M | n |
合 计 | M | N |
(1)求出表中所表示的数分别是多少?
(2)画出频率分布直方图.
(3)全体女生中身高在哪组范围内的人数最多?
(本小题满分12分)某食品厂为了检查甲乙两条自动包装流水线的生产情况,随即在这两条流水线上各抽取40件产品作为样本称出它们的重量(单位:克),重量值落在的产品为合格品,否则为不合格品.表1是甲流水线样本频数分布表,图1是乙流水线样本的频率分布直方图.
表1:(甲流水线样本频数分布表) 图1:(乙流水线样本频率分布直方图)
(1)根据上表数据在答题卡上作出甲流水线样本的频率分布直方图;
(2)若以频率作为概率,试估计从两条流水线分别任取1件产品,该产品恰好是合格品的概率
分别是多少;
(3)由以上统计数据完成下面列联表,并回答有多大的把握认为“产品的包装质量与两条自动包装流水线的选择有关”.
甲流水线 | 乙流水线 | 合计 | |
合格品 |
|
| |
不合格品 |
|
| |
合 计 |
|
附:下面的临界值表供参考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:,其中)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com