题目列表(包括答案和解析)
(本小题满分14分)
已知函数对于任意(),都有式子成立(其中为常数).
(Ⅰ)求函数的解析式;
(Ⅱ)利用函数构造一个数列,方法如下:
对于给定的定义域中的,令,,…,,…
在上述构造过程中,如果(=1,2,3,…)在定义域中,那么构造数列的过程继续下去;如果不在定义域中,那么构造数列的过程就停止.
(ⅰ)如果可以用上述方法构造出一个常数列,求的取值范围;
(ⅱ)是否存在一个实数,使得取定义域中的任一值作为,都可用上述方法构造出一个无穷数列?若存在,求出的值;若不存在,请说明理由;
(ⅲ)当时,若,求数列的通项公式.
.在求某些函数的导数时,可以先在解析式两边取对数,再求导数,这比用一般方法求导数更为简单,如求的导数,可先在两边取对数,得,再在两边分别对x求导数,得即为,即导数为。若根据上面提供的方法计算函数的导数,则 _
某上市股票在30天内每股的交易价格(元)与时间(天)所组成的有序数对落在下图中的两条线段上,该股票在30天内的日交易量(万股)与时间(天)的部分数据如下表所示.
第t天 |
4 |
10 |
16 |
22 |
Q(万股) |
36 |
30 |
24 |
18 |
⑴根据提供的图象,写出该种股票每股交易价格(元)与时间(天)所满足的函数关系式;
⑵根据表中数据确定日交易量(万股)与时间(天)的一次函数关系式;
⑶在(2)的结论下,用(万元)表示该股票日交易额,写出关于的函数关系式,并求这30天中第几天日交易额最大,最大值为多少?
【解析】(1)根据图象可知此函数为分段函数,在(0,20]和(20,30]两个区间利用待定系数法分别求出一次函数关系式联立可得P的解析式;
(2)因为Q与t成一次函数关系,根据表格中的数据,取出两组即可确定出Q的解析式;
(3)根据股票日交易额=交易量×每股较易价格可知y=PQ,可得y的解析式,分别在各段上利用二次函数求最值的方法求出即可.
已知函数f(x)=ex-ax,其中a>0.
(1)若对一切x∈R,f(x) 1恒成立,求a的取值集合;
(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使恒成立.
【解析】解:令.
当时单调递减;当时单调递增,故当时,取最小值
于是对一切恒成立,当且仅当. ①
令则
当时,单调递增;当时,单调递减.
故当时,取最大值.因此,当且仅当时,①式成立.
综上所述,的取值集合为.
(Ⅱ)由题意知,令则
令,则.当时,单调递减;当时,单调递增.故当,即
从而,又
所以因为函数在区间上的图像是连续不断的一条曲线,所以存在使即成立.
【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出取最小值对一切x∈R,f(x) 1恒成立转化为从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com