已知函数y=log2(n∈N*). (1)当n=1,2,3,-时.已知函数的图象和直线y=1的交点的横坐标依次记为a1,a2,a3,-. 求证:a1+a2+a3+-+an<1. (2)对每一个n∈N*,设An.Bn为已知函数图象上与x轴距离为1的两点.求证:n取任意一个正整数时.以线段AnBn为直径的圆都与一条定直线相切.并求这条直线的方程和切点的坐标. 基础训练1答案 查看更多

 

题目列表(包括答案和解析)

已知函数y=log2(n∈N*).

(1)当n=1,2,3,…时,把已知函数的图象和直线y=1的交点的横坐标依次记为a1,a2,a3,……,求证a1+a2+a3+…+an<1;

(2)对于每一个n的值,设An、Bn为已知函数的图象上与x轴距离为1的两点,求证:n取任意一个正整数时,以AnBn为直径的圆都与一条定直线相切,并求出这条定直线的方程和切点的坐标.

查看答案和解析>>

(2006•宝山区二模)已知Sn是各项均为正数的递减等比数列{an}的前n项之和,且a2=
1
2
S3=
7
4

(1)求数列{an}的通项公式;
(2)设y=f(x)是偶函数,当x≤0时,f(x)=log2(x+1),求f(x)的定义域D及其解析式;
(3)对于任意正整数n及(2)中的f(x),若不等式f(x)+Sn<0恒成立,求x的取值范围.

查看答案和解析>>

(2006•宝山区二模)已知Sn是各项均为正数的递减等比数列{an}的前n项之和,且a2=
1
2
S3=
7
4

(1)求数列{an}的通项公式;
(2)设y=f(x)是偶函数,当x≤0时,f(x)=log2(x+1),求f(x)的定义域D及其解析式;
(3)对任意正整数n和(2)中的f(x),若不等式f(x)+an<0恒成立,求x的取值范围.

查看答案和解析>>


同步练习册答案