已知函数对于任意的实数都有 (1)试用表示 (2)若为正整数.求的解析式 (3)若为正整数.且时.不等式.求a的取值范围? 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=ln(x+1)-
(1)若函数f(x)在[0,+∞)内为增函数,求正实数a的取值范围.
(2)当a=1时,求f(x)在[-,1]上的最大值和最小值;
(3)试利用(1)的结论,证明:对于大于1的任意正整数n,都有+++…+<lnn.

查看答案和解析>>

已知函数f(x)=ln(x+1)+mx,当x=0时,函数f(x)取得极大值.
(1)求实数m的值;
(2)已知结论:若函数f(x)=ln(x+1)+mx在区间(a,b)内导数都存在,且a>-1,则存在x∈(a,b),使得.试用这个结论证明:若-1<x1<x2,函数,则对任意x∈(x1,x2),都有f(x)>g(x);
(3)已知正数λ1,λ2,…,λn,满足λ12+…+λn=1,求证:当n≥2,n∈N时,对任意大于-1,且互不相等的实数x1,x2,…,xn,都有f(λ1x12x2+…+λnxn)>λ1f(x1)+λ2f(x2)+…+λnf(xn).

查看答案和解析>>

已知函数f(x)=ln(x+1)+mx,当x=0时,函数f(x)取得极大值.
(1)求实数m的值;
(2)已知结论:若函数f(x)=ln(x+1)+mx在区间(a,b)内导数都存在,且a>-1,则存在x∈(a,b),使得.试用这个结论证明:若-1<x1<x2,函数,则对任意x∈(x1,x2),都有f(x)>g(x);
(3)已知正数λ1,λ2,…,λn,满足λ12+…+λn=1,求证:当n≥2,n∈N时,对任意大于-1,且互不相等的实数x1,x2,…,xn,都有f(λ1x12x2+…+λnxn)>λ1f(x1)+λ2f(x2)+…+λnf(xn).

查看答案和解析>>

已知函数f(x)=ln(x+1)+mx,当x=0时,函数f(x)取得极大值.
(1)求实数m的值;
(2)已知结论:若函数f(x)=ln(x+1)+mx在区间(a,b)内导数都存在,且a>-1,则存在x∈(a,b),使得.试用这个结论证明:若-1<x1<x2,函数,则对任意x∈(x1,x2),都有f(x)>g(x);
(3)已知正数λ1,λ2,…,λn,满足λ12+…+λn=1,求证:当n≥2,n∈N时,对任意大于-1,且互不相等的实数x1,x2,…,xn,都有f(λ1x12x2+…+λnxn)>λ1f(x1)+λ2f(x2)+…+λnf(xn).

查看答案和解析>>

已知函数f(x)=ln(x+1)+mx,当x=0时,函数f(x)取得极大值.

(Ⅰ)求实数m的值;

(Ⅱ)已知结论∶若函数f(x)=ln(x+1)+mx在区间(a,b)内导数都存在,且a>-1,则存在x0∈(a,b),使得.试用这个结论证明∶若-1<x1<x2,函数,则对任意x∈(x1,x2),都有f(x)>g(x);

(Ⅲ)已知正数λ1,λ2,…λn,满足λ1+λ2+…+λn=1,求证∶当n≥2,n∈N时,对任意大于-1,且互不相等的实数x1,x2,…,xn,都有f(λ1x1+λ2x2+…+λnxn)>λ1f(x1)+λ2f(x2)+…+λnf(xn).

查看答案和解析>>


同步练习册答案