题目列表(包括答案和解析)
(本小题满分14分)
设函数
(Ⅰ)若函数在处取得极小值是,求的值;
(Ⅱ)求函数的单调递增区间;
(Ⅲ)若函数在上有且只有一个极值点, 求实数的取值范围.
(本小题满分14分)已知函数(其中是自然对数的底数,为正数)
(I)若在处取得极值,且是的一个零点,求的值;(II)若,求在区间上的最大值;(III)设函数在区间上是减函数,求的取值范围。
(本小题满分14分)设是函数的一个极值点。
⑴求和的关系式并求的单调区间;
⑵设,若存在使得成立,求的取值范围。
(本小题满分14分)
已知函数,当时,取得极小值.
(1)求,的值;
(2)设直线,曲线.若直线与曲线同时满足下列两个条件:
①直线与曲线相切且至少有两个切点;
②对任意都有.则称直线为曲线的“上夹线”.
试证明:直线是曲线的“上夹线”.
(3)记,设是方程的实数根,若对于定义域中任意的、,当,且时,问是否存在一个最小的正整数,使得恒成立,若存在请求出的值;若不存在请说明理由.
(本小题满分14分)
已知函数,其中常数.
(Ⅰ)当时,求函数的极值点;
(Ⅱ)令,若函数在区间上单调递增,求的取值范围;
(Ⅲ)设定义在D上的函数在点处的切线方程为当时,若在D内恒成立,则称P为函数的“特殊点”,请你探究当时,函数是否存在“特殊点”,若存在,请最少求出一个“特殊点”的横坐标,若不存在,说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com