19. 本小题主要考查等比数列的基本知识.考查分析问题能力和推理能力.满分12分. 解:(Ⅰ)因为是等比数列. 当 上式等价于不等式组: ① 或 ② 解①式得q>1,解②.由于n可为奇数.可为偶数.得-1<q<1. 综上.q的取值范围是 (Ⅱ)由 于是 查看更多

 

题目列表(包括答案和解析)

已知是等差数列,其前n项和为是等比数列,且 

(I)求数列的通项公式;

(II)记求证:,

【考点定位】本小题主要考查等差数列与等比数列的概念、通项公式、前n项和公式、数列求和等基础知识.考查化归与转化的思想方法.考查运算能力、推理论证能力.

 

查看答案和解析>>

已知是等差数列,其前n项和为是等比数列,且 
(I)求数列的通项公式;
(II)记求证:,
【考点定位】本小题主要考查等差数列与等比数列的概念、通项公式、前n项和公式、数列求和等基础知识.考查化归与转化的思想方法.考查运算能力、推理论证能力.

查看答案和解析>>

(2009天津卷理)(本小题满分14分)

已知等差数列{}的公差为d(d0),等比数列{}的公比为q(q>1)。设=+…..+ ,=-+…..+(-1 ,n     

== 1,d=2,q=3,求  的值;

=1,证明(1-q)-(1+q)=,n;    

(Ⅲ)   若正数n满足2nq,设的两个不同的排列, ,   证明

本小题主要考查等差数列的通项公式、等比数列的通项公式与前n项和公式等基础知识,考查运算能力,推理论证能力及综合分析和解决问题的能力的能力,满分14分。

查看答案和解析>>

(2009天津卷理)(本小题满分14分)

已知等差数列{}的公差为d(d0),等比数列{}的公比为q(q>1)。设=+…..+ ,=-+…..+(-1 ,n     

== 1,d=2,q=3,求  的值;

=1,证明(1-q)-(1+q)=,n;    

(Ⅲ)   若正数n满足2nq,设的两个不同的排列, ,   证明

本小题主要考查等差数列的通项公式、等比数列的通项公式与前n项和公式等基础知识,考查运算能力,推理论证能力及综合分析和解决问题的能力的能力,满分14分。

查看答案和解析>>


同步练习册答案