题目列表(包括答案和解析)
(本小题共14分)已知是由满足下述条件的函数构成的集合:对任意
,①方程
有实数根;②函数
的导数
满足
.
(Ⅰ)判断函数是否是集合
中的元素,并说明理由;
(Ⅱ)集合中的元素
具有下面的性质:若
的定义域为
,则对于任意
,都存在
,使得等式
成立.试用这一性质证明:方程
有且只有一个实数根;
(Ⅲ)对任意,且
,求证:对于
定义域中任意的
,
,
,当
,且
时,
.
(19)(本小题共14分)
已知抛物线,点
关于
轴的对称点为
,直线
过点
交抛物线于
两点.
(Ⅰ)证明:直线的斜率互为相反数;
(Ⅱ)求面积的最小值;
(Ⅲ)当点的坐标为
,且
.根据(Ⅰ)(Ⅱ)推测并回答下列问题(不必说明理由):
① 直线的斜率是否互为相反数?
② 面积的最小值是多少?
(19)(本小题共14分)
已知抛物线,点
关于
轴的对称点为
,直线
过点
交抛物线于
两点.
(Ⅰ)证明:直线的斜率互为相反数;
(Ⅱ)求面积的最小值;
(Ⅲ)当点的坐标为
,且
.根据(Ⅰ)(Ⅱ)推测并回答下列问题(不必说明理由):
① 直线的斜率是否互为相反数?
② 面积的最小值是多少?
.(本小题满分14分)
已知数列是首项为
,公差为
的等差数列,
是首项为
,公比为
的等比数列,且满足
,其中
.
(Ⅰ)求的值;
(Ⅱ)若数列与数列
有公共项,将所有公共项按原顺序排列后构成一个新数列
,求数列
的通项公式;
(Ⅲ)记(Ⅱ)中数列的前项之和为
,求证:
.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com