23.如图.先把矩形纸片ABCD对折. 折痕为MN.恢复原状后.再把点B叠折到折痕MN上.设EB的延长线交AD于F试判断AEF的形状.并说明理由. 查看更多

 

题目列表(包括答案和解析)

如图,先把一个矩形纸片ABCD对折,设折痕为MN,再把点B叠在折痕MN上,得到△ABE,过点B折纸片使点D叠在直线AD上,得折痕PQ。
(1)求证:△PBE∽△QAB
(2)你认为△PBE和△BAE相似吗?如果相似,给出证明;如不相似,请说明理由。
(3)如果直线EB折叠纸片,点A是否能叠在直线EC上?为什么?

查看答案和解析>>

  取一张矩形的纸片进行折叠,具体操作过程如下:

  第一步:先把矩形ABCD对折,折痕为MN,如图甲;

  第二步:再把B点叠在折痕线MN上,折痕为AE,点B在MN上的对应点为,得Rt△AE,如图乙;

  第三步:沿E线折叠得折痕EF,如图丙.

  利用展开图丁探究:

(1)

△AEF是什么三角形?

(2)

对于任一矩形,按照上述方法是否都能折出这种三角形?请说明理由.

查看答案和解析>>

取一张矩形的纸进行折叠,具体操作过程如下:
第一步:先把矩形ABCD对折,折痕为MN,如图(1)所示;
第二步:再把B点叠在折痕线MN上,折痕为AE,点B在MN上的对应点为B′,得 Rt△AB′E,如图(2)所示;
第三步:沿EB′线折叠得折痕EF,如图(3)所示;利用展开图(4)所示.
精英家教网
探究:
(1)△AEF是什么三角形?证明你的结论.
(2)对于任一矩形,按照上述方法是否都能折出这种三角形?请说明理由.
(3)如图(5),将矩形纸片ABCD沿EF折叠,使点A落在DC边上的点A′处,x轴垂直平分DA,直线EF的表达式为y=kx-k (k<0)
①问:EF与抛物线y=-
1
8
x2
有几个公共点?
②当EF与抛物线只有一个公共点时,设A′(x,y),求
x
y
的值.

查看答案和解析>>

取一张矩形的纸进行折叠,具体操作过程如下:
第一步:先把矩形ABCD对折,折痕为MN,如图(1)所示;
第二步:再把B点叠在折痕线MN上,折痕为AE,点B在MN上的对应点为B′,得Rt△AB′E,如图(2)所示;
第三步:沿EB′线折叠得折痕EF,如图(3)所示;利用展开图(4)所示.

探究:
(1)△AEF是什么三角形?证明你的结论.
(2)对于任一矩形,按照上述方法是否都能折出这种三角形?请说明理由.
(3)如图(5),将矩形纸片ABCD沿EF折叠,使点A落在DC边上的点A′处,x轴垂直平分DA,直线EF的表达式为y=kx-k (k<0)
①问:EF与抛物线y=-
1
8
x2
有几个公共点?
②当EF与抛物线只有一个公共点时,设A′(x,y),求
x
y
的值.

查看答案和解析>>

精英家教网如图,先把一矩形ABCD纸片对折,设折痕为MN,再把B点叠在折痕线上,得到△ABE,过B点折纸片使D点叠在直线AD上,得折痕PQ.
(1)求证:△PBE∽△QAB;
(2)你认为△PBE和△BAE相似吗?如果相似给出证明,如不相似请说明理由;
(3)如果沿直线EB折叠纸片,点A是否能叠在直线EC上?为什么?

查看答案和解析>>


同步练习册答案