如图.AC=BD.BC=AD.说明△ABC和△BAD全等的理由. 查看更多

 

题目列表(包括答案和解析)

如图(1),Rt△ABC和Rt△DEC中,∠ACB=∠DCE=90°,AC=BC,DC=EC,

(1)试问图(1)中AE和BD有怎样的数量和位置关系?试证明你的结论。

(2)将图(1)中Rt△DEC绕点C旋转到图(2)的位置,试问(1)中的结论还成立吗?如成立,请证明;如不成立,请说明理由。

(3)在图(2)中连接AD和BE,若AD=4,BE=6,则△ABC和△DEC的面积之和为       

 


查看答案和解析>>

我们做风筝时,常选用细木棒做成如图所示的“筝形”框架,要求AB=AD,BC=CD,AB>BC.

(1)观察此图,是否是轴对称图形?若是,指出对称轴.

(2)∠ABC和∠ADC相等吗?为什么?说明你的理由.

(3)判断BD是否被AC垂直平分?并说明你的理由.

查看答案和解析>>

在图形的全等变换中,有旋转变换,翻折(轴对称)变换和平移变换.一次数学活动课上,老师组织大家利用矩形进行图形变换的探究活动.

(1)第一小组的同学发现,在如图1-1的矩形ABCD中,ACBD相交于点O,Rt△ADC可以由Rt△ABC经过一种变换得到,请你写出这种变换的过程  ▲ 

(2)第二小组同学将矩形纸片ABCD按如下顺序进行操作:对折、展平,得折痕EF(如图2-1);再沿GC折叠,使点B落在EF上的点B'处(如图2-2),这样能得到∠B'GC的大小,你知道∠B'GC的大小是多少吗?请写出求解过程.

(3)第三小组的同学,在一个矩形纸片上按照图3-1的方式剪下△ABC,其中BABC,将△ABC沿着直线AC的方向依次进行平移变换,每次均移动AC的长度,得到了△CDE、△EFG和△GHI,如图3-2.已知AH=AI,判断以ADAFAH为三边能否构成三角形?若能构成,请判断这个三角形的形状,若不能构成,请说明理由.

(4)探究活动结束后,老师给大家留下了一道探究题:如图4-1,已知AA'BB'CC'=4,∠AOB'=∠BOC'=∠COA'=60°,请利用图形变换探究SAOB'+SBOC'+SCOA'的大小关系.

 

查看答案和解析>>

在图形的全等变换中,有旋转变换,翻折(轴对称)变换和平移变换.一次数学活动课上,老师组织大家利用矩形进行图形变换的探究活动.

(1)第一小组的同学发现,在如图1-1的矩形ABCD中,ACBD相交于点O,Rt△ADC可以由Rt△ABC经过一种变换得到,请你写出这种变换的过程 ▲ 
(2)第二小组同学将矩形纸片ABCD按如下顺序进行操作:对折、展平,得折痕EF(如图2-1);再沿GC折叠,使点B落在EF上的点B'处(如图2-2),这样能得到∠B'GC的大小,你知道∠B'GC的大小是多少吗?请写出求解过程.

(3)第三小组的同学,在一个矩形纸片上按照图3-1的方式剪下△ABC,其中BABC,将△ABC沿着直线AC的方向依次进行平移变换,每次均移动AC的长度,得到了△CDE、△EFG和△GHI,如图3-2.已知AH=AI,判断以ADAFAH为三边能否构成三角形?若能构成,请判断这个三角形的形状,若不能构成,请说明理由.

(4)探究活动结束后,老师给大家留下了一道探究题:如图4-1,已知AA'BB'CC'=4,∠AOB'=∠BOC'=∠COA'=60°,请利用图形变换探究SAOB'+SBOC'+SCOA'的大小关系.

查看答案和解析>>

在图形的全等变换中,有旋转变换,翻折(轴对称)变换和平移变换.一次数学活动课上,老师组织大家利用矩形进行图形变换的探究活动.

(1)第一小组的同学发现,在如图1-1的矩形ABCD中,ACBD相交于点O,Rt△ADC可以由Rt△ABC经过一种变换得到,请你写出这种变换的过程 ▲ 
(2)第二小组同学将矩形纸片ABCD按如下顺序进行操作:对折、展平,得折痕EF(如图2-1);再沿GC折叠,使点B落在EF上的点B'处(如图2-2),这样能得到∠B'GC的大小,你知道∠B'GC的大小是多少吗?请写出求解过程.

(3)第三小组的同学,在一个矩形纸片上按照图3-1的方式剪下△ABC,其中BABC,将△ABC沿着直线AC的方向依次进行平移变换,每次均移动AC的长度,得到了△CDE、△EFG和△GHI,如图3-2.已知AH=AI,判断以ADAFAH为三边能否构成三角形?若能构成,请判断这个三角形的形状,若不能构成,请说明理由.

(4)探究活动结束后,老师给大家留下了一道探究题:如图4-1,已知AA'BB'CC'=4,∠AOB'=∠BOC'=∠COA'=60°,请利用图形变换探究SAOB'+SBOC'+SCOA'的大小关系.

查看答案和解析>>


同步练习册答案