1.判断基求概念.基本定理等的证误.在中考题中常以选择填空的形式考查形式对基本概念基求定理的正确理解.如:已知命题:垂直于半径的直线是圆的切线,(3)对角线垂直且相等的四边形是正万形,(4)正多边形都是中心对称图形,(5)对角线相等的梯形是等腰梯形.其中错误的命题有 4个 (D)5个 查看更多

 

题目列表(包括答案和解析)

阅读下面的情景对话,然后解答问题:
老师:我们新定义一种三角形,两边平方和等于第三边平方的2倍的三角形叫做奇异三角形.
小华:等边三角形一定是奇异三角形!
小明:那直角三角形中是否存在奇异三角形呢?
问题(1)根据“奇异三角形”的定义,请你判断小华提出的猜想:“等边三角形一定是奇异三角形”是否正确?
问题(2)在Rt△ABC中,∠ACB=90°,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇异三角形,求a:b:c;
问题(3)如图,以AB为斜边分别在AB的两侧作直角三角形,且AD=BD,若四边形ADBC内存在点E,使得AE=AD,CB=CE.
①求证:△ACE是奇异三角形;
②当△ACE是直角三角形时,求∠DBC的度数.

查看答案和解析>>

对于任意两个二次函数:y1=a1x2+b1x+c1,y2=a2x2+b2x+c2,其中a1•a2≠0.当|a1|=|a2|时,我们称这两个二次函数的图象为全等抛物线.现有△ABM,A(-1,0),B(1,0).我们记过三点的二次函数的图象为“C□□□”(“□□□”中填写相应三个点的字母).如过点A、B、M三点的二次函数的图象为CABM
精英家教网
(1)如果已知M(0,1),△ABM≌△ABN.请通过计算判断CABM与CABN是否为全等抛物线;
(2)①若已知M(0,n),在图中的平面直角坐标系中,以A、B、M三点为顶点,画出平行四边形.求抛物线CABM的解析式,然后请直接写出所有过平行四边形中三个顶点且能与CABM全等的抛物线解析式.
②若已知M(m,n),当m,n满足什么条件时,存在抛物线CABM?根据以上的探究结果,在图中的平面直角坐标系中,以A、B、M三点为顶点,画出平行四边形.然后请列出所有满足过平行四边形中三个顶点且能与CABM全等的抛物线C□□□”.

查看答案和解析>>

阅读下面的情景对话,然后解答问题:
老师:我们新定义一种三角形,两边平方和等于第三边平方的2倍的三角形叫做奇异三角形.
小华:等边三角形一定是奇异三角形!
小明:那直角三角形是否存在奇异三角形呢?
(1)根据“奇异三角形”的定义,请你判断小华提出的命题:“等边三角形一定是奇异三角形”这句话是对还是错?

(2)在Rt△ABC中,两边长分别是a=5
2
、c=10,这个三角形是否是奇异三角形?请说明理由.
(3)在Rt△ABC中,∠C=90°,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇异三角形,求(b+c):a的值.

查看答案和解析>>

对于任意两个二次函数:y1=a1x2+b1x+c1,y2=a2x2+b2x+c2,(a1a2≠0),当|a1|=|a2|时,我们称这两个二次函数的图象为全等抛物线.
现有△ABM,A(-1,0),B(1,0).记过三点的二次函数抛物线为“C□□□”(“□□□”中填写相应三个点的字母)
(1)若已知M(0,1),△ABM≌△ABN(0,-1).请通过计算判断CABM与CABN是否为全等抛物线;
(2)在图2中,以A、B、M三点为顶点,画出平行四边形.
①若已知M(0,n),求抛物线CABM的解析式,并直接写出所有过平行四边形中三个顶点且能与CABM全等的抛物线解析式.
②若已知M(m,n),当m,n满足什么条件时,存在抛物线CABM根据以上的探究结果,判断是否存在过平行四边形中三个顶点且能与CABM全等的抛物线?若存在,请列出所有满足条件的抛物线“C□□□”;若不存在,请说明理由.
精英家教网精英家教网精英家教网

查看答案和解析>>

阅读下面的情景对话,然后解答问题:
精英家教网
(1)根据“奇异三角形”的定义,请你判断小华提出的命题:“等边三角形一定是奇异三角形”是真命题还是假命题?
(2)在Rt△ABC中,∠C=90°,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇异三角形,求a:b:c;
(3)如图,AB是⊙O的直径,C是⊙O上一点(不与点A、B重合),D是半圆
ADB
的中点,C、D在直径AB的两侧,若在⊙O内存在点E,使AE=AD,CB=CE.
①求证:△ACE是奇异三角形;
②当△ACE是直角三角形时,求∠AOC的度数.
精英家教网

查看答案和解析>>


同步练习册答案