题目列表(包括答案和解析)
已知平面直角坐标系中,B(-3,0),A为y轴正半轴上一动点,半径为
的⊙A交y轴于点G、H(点G在点H的上方),连接BG交⊙A于点C。
(1
)如图①,当⊙A与x轴相切时,求直线BG的解析式;(2
)如图②,若CG=2BC,求OA的长;(3
)如图③,D为半径AH上一点,且AD=1,过点D作⊙A的弦CE,连结GE并延长交x轴于点F,当⊙A与x轴相离时,给出下列结论:①
如图,第一象限内半径为2的⊙C与y轴相切于点A,作直径AD,过点D作⊙C的切线l交x轴于点B,P为直线l上一动点,已知直线PA的解析式为:y=kx+3。
(1) 设点P的纵坐标为p,写出p随变化的函数关系式。
(2)设⊙C与PA交于点M,与AB交于点N,则不论动点P处于直线l上(除点B以外)的什么位置时,都有△AMN∽△ABP。请你对于点P处于图中位置时的两三角形相似给予证明;
(3)是否存在使△AMN的面积等于
的k值?若存在,请求出符合的k值;若不存在,请说明理由。
![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com