30.为正整数.请你确定之间的正整数的个数.并使其所对应的正整数的 取值范围之和不小于2008. 查看更多

 

题目列表(包括答案和解析)

某地一经济适用房楼盘一楼是商铺(暂不出售),二楼至二十三楼均为商品适用房(对外出售).商品房售价方案如下:第八层售价为2000元/m2,从第八层起每上升一层,每平方米的售价增加40元;反之,楼层每下降一层,每平方米的售价减少20元.已知商品房每套面积均为80平方米.开发商为购买者制定了两种购买方案:
方案一:购买者先交纳首付金额(商品房总价的30%),再办理分期付款(即贷款).
方案二:购买者一次性付清所有房款,则享受8%的优惠,并免收五年物业管理费(已知每月物业管理费为a元)
(1)请写出每平方米售价y(元/米2)与楼层x(2≤x≤23,x是正整数)之间的函数关系式;
(2)王老师已筹到60000元,若用方案一购房,他可以购买哪些楼层的商品房呢?
(3)有人建议王老师使用方案二购买第十六层,但他认为此方案还不如不免收物业管理费而直接享受9%的优惠划算.你认为王老师的说法一定正确吗?请通过运算确定a的范围,阐明你的看法.

查看答案和解析>>

某地一经济适用房楼盘一楼是商铺(暂不出售),二楼至二十三楼均为商品适用房(对外出售).商品房售价方案如下:第八层售价为2000元/m2,从第八层起每上升一层,每平方米的售价增加40元;反之,楼层每下降一层,每平方米的售价减少20元.已知商品房每套面积均为80平方米.开发商为购买者制定了两种购买方案:
方案一:购买者先交纳首付金额(商品房总价的30%),再办理分期付款(即贷款).
方案二:购买者一次性付清所有房款,则享受8%的优惠,并免收五年物业管理费(已知每月物业管理费为a元)
(1)请写出每平方米售价y(元/米2)与楼层x(2≤x≤23,x是正整数)之间的函数关系式;
(2)王老师已筹到60000元,若用方案一购房,他可以购买哪些楼层的商品房呢?
(3)有人建议王老师使用方案二购买第十六层,但他认为此方案还不如不免收物业管理费而直接享受9%的优惠划算.你认为王老师的说法一定正确吗?请通过运算确定a的范围,阐明你的看法.

查看答案和解析>>

某地一经济适用房楼盘一楼是商铺(暂不出售),二楼至二十三楼均为商品适用房(对外出售).商品房售价方案如下:第八层售价为2000元/m2,从第八层起每上升一层,每平方米的售价增加40元;反之,楼层每下降一层,每平方米的售价减少20元.已知商品房每套面积均为80平方米.开发商为购买者制定了两种购买方案:
方案一:购买者先交纳首付金额(商品房总价的30%),再办理分期付款(即贷款).
方案二:购买者一次性付清所有房款,则享受8%的优惠,并免收五年物业管理费(已知每月物业管理费为a元)
(1)请写出每平方米售价y(元/米2)与楼层x(2≤x≤23,x是正整数)之间的函数关系式;
(2)王老师已筹到60000元,若用方案一购房,他可以购买哪些楼层的商品房呢?
(3)有人建议王老师使用方案二购买第十六层,但他认为此方案还不如不免收物业管理费而直接享受9%的优惠划算.你认为王老师的说法一定正确吗?请通过运算确定a的范围,阐明你的看法.

查看答案和解析>>

(2013•郑州模拟)某地一经济适用房楼盘一楼是商铺(暂不出售),二楼至二十三楼均为商品适用房(对外出售).商品房售价方案如下:第八层售价为2000元/m2,从第八层起每上升一层,每平方米的售价增加40元;反之,楼层每下降一层,每平方米的售价减少20元.已知商品房每套面积均为80平方米.开发商为购买者制定了两种购买方案:
方案一:购买者先交纳首付金额(商品房总价的30%),再办理分期付款(即贷款).
方案二:购买者一次性付清所有房款,则享受8%的优惠,并免收五年物业管理费(已知每月物业管理费为a元)
(1)请写出每平方米售价y(元/米2)与楼层x(2≤x≤23,x是正整数)之间的函数关系式;
(2)王老师已筹到60000元,若用方案一购房,他可以购买哪些楼层的商品房呢?
(3)有人建议王老师使用方案二购买第十六层,但他认为此方案还不如不免收物业管理费而直接享受9%的优惠划算.你认为王老师的说法一定正确吗?请通过运算确定a的范围,阐明你的看法.

查看答案和解析>>

如图,一张边长为20cm正方形硬纸板,把它的四个角都剪去一个边长为xcm的小正方形,然后把它折成一个无盖的长方体,设长方体的容积为Vcm3,请回答下列问题:
(1)若用含有x的代数式表示V,则V=
x(20-2x)2
x(20-2x)2

(2)根据(1)中结果,填写下表:
x(cm) 1 2 3 4 5 6 7
V(cm3 324 512 500 384 252
(3)观察(2)中表格,容积V的值是否随x值的增大而增大?此时当x取什么整数值时,容积V的值最大?
(4)课后小英同学继续对这个问题作了以下探究:
当x=3.2cm时,V=591.872cm3;当x=3.3cm时,V=592.548cm3
当x=3.4cm时,V=592.416cm3;当x=3.5cm时,V=591.5cm3
小英同学发现x的取值一定介于3.3cm~3.4cm之间,估计x的取值还能更精确些,小英再计算x=3.3cm,3.33cm,3.333cm,3.3333cm…时,发现容积还在逐渐增大.现请你也观察(4)中数据变化,能否推测x可以取到哪一个定值,容积V的值最大?(直接写出即可)

查看答案和解析>>


同步练习册答案