12.解:⑴设A(.0).B(.0).由题设可求得C点的坐标为(0.).且<0. >0.∵<0.∴>0 由S△AOC-S△BOC=OA·OB得: 得: 得: ⑵设抛物线的对称轴与轴交于点M.与△PAB的外接圆交于点N. ∵tan∠CAB=.∴.∴A点的坐标为(.0) ∴A点在抛物线上. ∴.代入.得 又 ∵.为方程的两根. ∴.即: ∴ ∴B点的坐标为(.0). ∴顶点P的坐标为(.) 由相交弦定理得: AM·BM=PM·MN 又 ∵. ∴AM=BM=.PM= ∴. ∴. ∴所求的抛物线的函数解析式是: 查看更多

 

题目列表(包括答案和解析)

本题分为A、B 两类题,你可从A、B 两类题中任选一题解答即可
(A类):如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC的平行线交AC于P,交AB于Q.
(1)求四边形AQMP的周长;
(2)写出图中的两对相似三角形(不需证明);
(3)M位于BC的什么位置时,四边形AQMP为菱形?说明你的理由.
(B类):有人这样证明三角形内角和是180°,如图,D是△ABC内一点,连接AD、BD、CD,他们将△ABC分成了三个小的三角形.因此有:三个小三角形的内角和的和比△ABC的内角和多360°,如果设三角形内角精英家教网和是x,则有:x+x+x=x+360°,易解得x=180°,你认为这个证明正确吗?说说你的理由.

查看答案和解析>>

本题分为A、B 两类题,你可从A、B 两类题中任选一题解答即可
(A类):如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC的平行线交AC于P,交AB于Q.
(1)求四边形AQMP的周长;
(2)写出图中的两对相似三角形(不需证明);
(3)M位于BC的什么位置时,四边形AQMP为菱形?说明你的理由.
(B类):有人这样证明三角形内角和是180°,如图,D是△ABC内一点,连接AD、BD、CD,他们将△ABC分成了三个小的三角形.因此有:三个小三角形的内角和的和比△ABC的内角和多360°,如果设三角形内角和是x,则有:x+x+x=x+360°,易解得x=180°,你认为这个证明正确吗?说说你的理由.

查看答案和解析>>

本题分为A、B 两类题,你可从A、B 两类题中任选一题解答即可
(A类):如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC的平行线交AC于P,交AB于Q.
(1)求四边形AQMP的周长;
(2)写出图中的两对相似三角形(不需证明);
(3)M位于BC的什么位置时,四边形AQMP为菱形?说明你的理由.
(B类):有人这样证明三角形内角和是180°,如图,D是△ABC内一点,连接AD、BD、CD,他们将△ABC分成了三个小的三角形.因此有:三个小三角形的内角和的和比△ABC的内角和多360°,如果设三角形内角和是x,则有:x+x+x=x+360°,易解得x=180°,你认为这个证明正确吗?说说你的理由.

查看答案和解析>>

如图,A、B两点被池塘隔开,为测量AB两点的距离,如图①在AB外选一点C,联结AC和BC,并分别找出AC和BC的中点M、N,如果测得MN=20 m,那么AB=________.

(1)测AB距离也可由图②所示用三角形全等的知识来解决,请根据题意填空:延长AC到D,使CD=AC,延长BC到E,使CE=________,则由全等三角形得,AB=________.

(2)测AB距离还可以用其他的几何知识来设计测量方案,求出AB的长.请你在图③中画出图形,并叙述你的测量方案.

查看答案和解析>>

如图1,A、B两点被池塘隔开,为测量AB两点的距离,在AB外选一点C,连接AC和BC,并分别找出AC和BC的中点M、N,则MN是△ABC的中位线,根据三角形的中位线定理:三角形的中位线平行于第三边且等于第三边的一半,如果测得MN=20m,那么AB=2×20m=40m.
(1)小红说:测AB距离也可以由图2所示用三角形全等知识来解决,请根据题意填空:延长AC到D,使CD=
AC
AC
,延长BC到E,使CE=
BC
BC
,由全等三角形得,AB=ED;
(2)小华说:测AB距离也可以由三角形相似的知识来设计测量方法,求出AB的长;请根据题意在如图3中画出相应的测量图形:延长AC到H,使CH=2AC,延长BC到Q,使CQ=2BC,连接QH;若测得QH的长是400米,你能测出AB的长吗?若能,请测出;若不能,请说明理由.

查看答案和解析>>


同步练习册答案