利用太阳光分解水制氢是未来解决能源危机的理想方法之一.某研究小组设计了如右图所示的循环系统实现光分解水制氢.反应过程中所需的电能由太阳能光电池提供.反应体系中I2和Fe3+等可循环使用. ⑴写出电解池A.电解池B和光催化反应池中反应的离子方程式. ⑵若电解池A中生成3.36 L H2.试计算电解池B中生成Fe2+的物质的量. ⑶若循环系统处于稳定工作状态时.电解池A中流入和流出的HI浓度分别为a mol·L-和b mol·L-1.光催化反应生成Fe3+的速率为c mol·L-1.循环系统中溶液的流量为Q(流量为单位时间内流过的溶液体积).试用含所给字母的代数式表示溶液的流量Q. 查看更多

 

题目列表(包括答案和解析)

利用太阳光分解水制氢是未来解决能源危机的理想方法之一。某研究小组设计了如下图所示的循环系统实现光分解水制氢。反应过程中所需的电能由太阳能光电池提供,反应体系中I2和Fe3+等可循环使用。

(1)写出电解池A、电解池B和光催化反应池中反应的离子方程式。

(2)若电解池A中生成3.36 L H2(标准状况),试计算电解池B中生成Fe2+的物质的量。

(3)若循环系统处于稳定工作状态时,电解池A中流入和流出的HI浓度分别为a mol·L-1和b mol·L-1,光催化反应生成Fe3+的速率为c mol·L-1,循环系统中溶液的流量为Q(流量为单位时间内流过的溶液体积)。试用含所给字母的代数式表示溶液的流量Q。

查看答案和解析>>

25.利用太阳光分解水制氢是未来解决能源危机的理想方法之一。某研究小组设计了如图所示的循环系统实现光分解水制氢。反应过程中所需的电能由太阳能光电池提供,反应体系中I2和Fe2+等可循环使用。

⑴写出电解池A、电解池B和光催化反应池中反应的离子方程式。

⑵若电解池A中生成3.36 L H2(标准状况),试计算电解池B中生成Fe2+的物质的量。

⑶若循环系统处于稳定工作状态时,电解池A中流入和流出的HI浓度分别为a mol·L1和b mol·L1,光催化反应生成Fe3+的速率为c mol·min1,循环系统中溶液的流量为Q(流量为单位时间内流过的溶液体积)。试用含所给字母的代数式表示溶液的流量Q。

查看答案和解析>>

利用太阳光分解水制氢是未来解决能源危机的理想方法之一。某研究小组设计了如下图所示的循环系统实现光分解水制氢。反应过程中所需的电能由太阳能光电池提供,反应体系中I2和Fe3+等可循环使用。

(1)写出电解池A、电解池B和光催化反应池中反应的离子方程式。
(2)若电解池A中生成3.36 L H2(标准状况),试计算电解池B中生成Fe2+的物质的量。
(3)若循环系统处于稳定工作状态时,电解池A中流入和流出的HI浓度分别为a mol·L-1和b mol·L-1,光催化反应生成Fe3+的速率为c mol·L-1,循环系统中溶液的流量为Q(流量为单位时间内流过的溶液体积)。试用含所给字母的代数式表示溶液的流量Q。

查看答案和解析>>

利用太阳光分解水制氢是未来解决能源危机的理想方法之一。某研究小组设计了如图1-2-21图所示的循环系统,实现光分解水制氢。反应过程中所需的电能由太阳能光电池提供,反应体系中I2和Fe2+等可循环使用。

图1-2-21

(1)写出电解池A、电解池B和光催化反应池中反应的离子方程式。

(2)若电解池A中生成3.36 L H2(标准状况),试计算电解池B中生成Fe2+的物质的量。

(3)若循环系统处于稳定工作状态时,电解池A中流入和流出的HI浓度分别为a mol·L-1和b mol·L-1,光催化反应生成Fe3+的速度为c mol·L-1,循环系统中溶液的流量为Q(流量为单位时间内流过的溶液体积)。

试用含所给字母的代数式表示溶液的流量Q。

查看答案和解析>>

利用太阳光分解水制氢是未来解决能源危机的理想方法之一。某研究小组设计了如下图所示的循环系统实现光分解水制氢。反应过程中所需的电能由太阳能光电池提供,反应体系中I2和Fe3+等可循环使用。

(1)写出电解池A、电解池B和光催化反应池中反应的离子方程式。

(2)若电解池A中生成3.36 L H2(标准状况),试计算电解池B中生成Fe2+的物质的量。

(3)若循环系统处于稳定工作状态时,电解池A中流入和流出的HI浓度分别为a mol·L-1和b mol·L-1,光催化反应生成Fe3+的速率为c mol·L-1,循环系统中溶液的流量为Q(流量为单位时间内流过的溶液体积)。试用含所给字母的代数式表示溶液的流量Q。

 

查看答案和解析>>


同步练习册答案