21.解:(1)过作轴于点.如图 在中.. ································· 1分 由对称性可知: ············································································ 2分 点的坐标为····························································································· 3分 (2)设经过的抛物线的解析式为.则 ································································································· 4分 解之得 抛物线的解析式为:································································· 5分 (3)与两坐标轴相切 圆心应在第一.三象限或第二.四象限的角平分线上. 即在直线或上·························································································· 6分 若点在直线上.根据题意有 解之得 . ····································································································· 7分 若点在直线上.根据题意有 解之得. 的半径为或.······································································ 8分 查看更多

 

题目列表(包括答案和解析)

孔明是一个喜欢探究钻研的同学,他在和同学们一起研究某条抛物线的性质时,将一把直角三角板的直角顶点置于平面直角坐标系的原点,两直角边与该抛物线交于两点,请解答以下问题:

(1)若测得(如图1),求的值;

(2)对同一条抛物线,孔明将三角板绕点旋转到如图2所示位置时,过轴于点,测得,写出此时点的坐标,并求点横坐标

(3)对该抛物线,孔明将三角板绕点旋转任意角度时惊奇地发现,交点的连线段总经过一个固定的点,试说明理由并求出该点的坐标.

 


查看答案和解析>>

孔明是一个喜欢探究钻研的同学,他在和同学们一起研究某条抛物线的性质时,将一把直角三角板的直角顶点置于平面直角坐标系的原点,两直角边与该抛物线交于两点,请解答以下问题:
(1)若测得(如图1),求的值;
(2)对同一条抛物线,孔明将三角板绕点旋转到如图2所示位置时,过轴于点,测得,写出此时点的坐标,并求点的横坐标;
(3)对该抛物线,孔明将三角板绕点旋转任意角度时惊奇地发现,交点的连线段总经过一个固定的点,试说明理由并求出该点的坐标.

查看答案和解析>>

在平面直角坐标中,边长为2的正方形的两顶点分别在轴、轴的正半轴上,点在原点.现将正方形点顺时针旋转,当点第一次落在直线上时停止旋转,旋转过程中,边交直线于点边交轴于点(如图).

(1)求边在旋转过程中所扫过的面积;

(2)旋转过程中,当平行时,求正方形 旋转的度数;

(3)设的周长为,在旋转正方形的过程中,值是否有变化?请证明你的结论.

查看答案和解析>>

在平面直角坐标中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转,旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N(如图).

(1)求边OA在旋转过程中所扫过的面积;

(2)旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数;

(3)设△MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论.

查看答案和解析>>

已知:正比例函数的图象于反比例函数的图象交于点M(a,1),MN⊥x轴于点N(如图),若△OMN的面积等于2,求这两个函数的解析式。

查看答案和解析>>


同步练习册答案