24.设抛物线的表达式为 1分 点在抛物线的图象上. ∴ ······························································ 3分 ∴抛物线的表达式为············································································· 4分 (2)设窗户上边所在直线交抛物线于C.D两点.D点坐标为(k.t) 已知窗户高1.6m.∴··························································· 5分 ············································································ 6分 ∴(m)·············································································· 7分 又设最多可安装n扇窗户 ∴····················································································· 9分 . 答:最多可安装4扇窗户.···················································································· 10分 (本题不要求学生画出4个表示窗户的小矩形) 查看更多

 

题目列表(包括答案和解析)

矩形OABC在平面直角坐标系中位置如图所示,A、C两点的坐标分别为A(6,0),C(0,-3),直线与BC边相交于D点.
(1)求点D的坐标;
(2)若抛物线经过点A,求此抛物线的表达式及对称轴;
(3)设(2)中的抛物线的对称轴与直线OD交于点M,点P为坐标轴上一动点,以P、O、M为顶点的三角形与△OCD相似,求出点M的坐标和符合条件的点P的坐标;
(4)当(3)中符合条件的△POM面积最大时,过点O的直线l将其面积分为1:3两部分,请直接写出直线l的解析式.

查看答案和解析>>

矩形OABC在平面直角坐标系中位置如图所示,A、C两点的坐标分别为A(6,0),C(0,-3),直线y=-
3
4
x
与BC边相交于D点.
(1)求点D的坐标;
(2)若抛物线y=ax2-
9
4
x
经过点A,求此抛物线的表达式及对称轴;
(3)设(2)中的抛物线的对称轴与直线OD交于点M,点P为坐标轴上一动点,以P、O、M为顶点的三角形与△OCD相似,求出点M的坐标和符合条件的点P的坐标;
(4)当(3)中符合条件的△POM面积最大时,过点O的直线l将其面积分为1:3两部分,请直接写出直线l的解析式.

查看答案和解析>>

解:(1)由抛物线C1得顶点P的坐标为(2,5)………….1分

∵点A(-1,0)在抛物线C1上∴.………………2分

(2)连接PM,作PH⊥x轴于H,作MG⊥x轴于G..

∵点P、M关于点A成中心对称,

∴PM过点A,且PA=MA..

∴△PAH≌△MAG..

∴MG=PH=5,AG=AH=3.

∴顶点M的坐标为(,5).………………………3分

∵抛物线C2与C1关于x轴对称,抛物线C3由C2平移得到

∴抛物线C3的表达式.  …………4分

(3)∵抛物线C4由C1绕x轴上的点Q旋转180°得到

∴顶点N、P关于点Q成中心对称.

 由(2)得点N的纵坐标为5.

设点N坐标为(m,5),作PH⊥x轴于H,作NG⊥x轴于G,作PR⊥NG于R.

∵旋转中心Q在x轴上,

∴EF=AB=2AH=6.

 ∴EG=3,点E坐标为(,0),H坐标为(2,0),R坐标为(m,-5).

根据勾股定理,得

     

  

       

①当∠PNE=90º时,PN2+ NE2=PE2

解得m=,∴N点坐标为(,5)

②当∠PEN=90º时,PE2+ NE2=PN2

解得m=,∴N点坐标为(,5).

③∵PN>NR=10>NE,∴∠NPE≠90º  ………7分

综上所得,当N点坐标为(,5)或(,5)时,以点P、N、E为顶点的三角形是直角三角形.…………………………………………………………………………………8分

查看答案和解析>>

如图,在平面直角坐标系中,已知点B(-2数学公式,0),A(m,0)(-数学公式<m<0),以AB为边在x轴下方作正方形ABCD,点E是线段OD与正方形ABCD的外接圆除点D以外的另一个交点,连接BE与AD相交于点F.
(1)求证:BF=DO;
(2)设直线l是△BDO的边BO的垂直平分线,且与BE相交于点G.若G是△BDO的外心,试求经过B、F、O三点的抛物线的解析表达式;
(3)在(2)的条件下,在抛物线上是否存在点P,使该点关于直线BE的对称点在x轴上?若存在,求出所有这样的点的坐标;若不存在,请说明理由.

查看答案和解析>>

如图,在平面直角坐标系中,已知点B(-2,0),A(m,0)(-<m<0),以AB为边在x轴下方作正方形ABCD,点E是线段OD与正方形ABCD的外接圆除点D以外的另一个交点,连接BE与AD相交于点F。

(1)求证:BF=DO;
(2)设直线l是△BDO的边BO的垂直平分线,且与BE相交于点G,若G是△BDO的外心,试求经过B、F、O三点的抛物线的解析表达式;
(3)在(2)的条件下,在抛物线上是否存在点P,使该点关于直线BE的对称点在x轴上?若存在,求出所有这样的点的坐标;若不存在,请说明理由。

查看答案和解析>>


同步练习册答案